Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6139, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783680

RESUMEN

The climate effects of atmospheric aerosol particles serving as cloud condensation nuclei (CCN) depend on chemical composition and hygroscopicity, which are highly variable on spatial and temporal scales. Here we present global CCN measurements, covering diverse environments from pristine to highly polluted conditions. We show that the effective aerosol hygroscopicity, κ, can be derived accurately from the fine aerosol mass fractions of organic particulate matter (ϵorg) and inorganic ions (ϵinorg) through a linear combination, κ = ϵorg ⋅ κorg + ϵinorg ⋅ κinorg. In spite of the chemical complexity of organic matter, its hygroscopicity is well captured and represented by a global average value of κorg = 0.12 ± 0.02 with κinorg = 0.63 ± 0.01 as the corresponding value for inorganic ions. By showing that the sensitivity of global climate forcing to changes in κorg and κinorg is small, we constrain a critically important aspect of global climate modelling.

2.
Environ Sci Technol ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36630690

RESUMEN

Wildfires are a major source of biomass burning aerosol to the atmosphere, with their incidence and intensity expected to increase in a warmer future climate. However, the toxicity evolution of biomass burning organic aerosol (BBOA) during atmospheric aging remains poorly understood. In this study, we report a unique set of chemical and toxicological metrics of BBOA from pine wood smoldering during multiphase aging by gas-phase hydroxyl radicals (OH). Both the fresh and OH-aged BBOA show activity relevant to adverse health outcomes. The results from two acellular assays (DTT and DCFH) show significant oxidative potential (OP) and reactive oxygen species (ROS) formation in OH-aged BBOA. Also, radical concentrations in the aerosol assessed by electron paramagnetic resonance (EPR) spectroscopy increased by 50% following heterogeneous aging. This enhancement was accompanied by a transition from predominantly carbon-centered radicals (85%) in the fresh aerosol to predominantly oxygen-centered radicals (76%) following aging. Both the fresh and aged biomass burning aerosols trigger prominent antioxidant defense during the in vitro exposure, indicating the induction of oxidative stress by BBOA in the atmosphere. By connecting chemical composition and toxicity using an integrated approach, we show that short-term aging initiated by OH radicals can produce biomass burning particles with a higher particle-bound ROS generation capacity, which are therefore a more relevant exposure hazard for residents in large population centers close to wildfire regions than previously studied fresh biomass burning emissions.

3.
Environ Sci Technol ; 56(18): 12945-12954, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36054832

RESUMEN

The ozonolysis of alkenes contributes substantially to the formation of secondary organic aerosol (SOA), which are important modulators of air quality and the Earth's climate. Criegee intermediates (CIs) are abundantly formed through this reaction. However, their contributions to aerosol particle chemistry remain highly uncertain. In this work, we present the first application of a novel methodology, using spin traps, which simultaneously quantifies CIs produced from the ozonolysis of volatile organic compounds in the gas and particle phases. Only the smallest CI with one carbon atom was detected in the gas phase of a ß-caryophyllene ozonolysis reaction system. However, multiple particle-bound CIs were observed in ß-caryophyllene SOA. The concentration of the most abundant CI isomer in the particle phase was estimated to constitute ∼0.013% of the SOA mass under atmospherically relevant conditions. We also demonstrate that the lifetime of CIs in highly viscous SOA particles is at least on the order of minutes, substantially greater than their gas-phase lifetime. The confirmation of substantial concentrations of large CIs with elongated lifetimes in SOA raises new questions regarding their influence on the chemical evolution of viscous SOA particles, where CIs may be a previously underestimated source of reactive species.


Asunto(s)
Ozono , Compuestos Orgánicos Volátiles , Aerosoles/química , Alquenos , Carbono , Ozono/química , Sesquiterpenos Policíclicos , Compuestos Orgánicos Volátiles/química
4.
Sci Adv ; 5(5): eaav7689, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31049398

RESUMEN

Aerosol particles and their interactions with clouds are one of the most uncertain aspects of the climate system. Aerosol processing by clouds contributes to this uncertainty, altering size distributions, chemical composition, and radiative properties. Many changes are limited by the availability of hydroxyl radicals in the droplets. We suggest an unrecognized potentially substantial source of OH formation in cloud droplets. During the first few minutes following cloud droplet formation, the material in aerosols produces a near-UV light-dependent burst of hydroxyl radicals, resulting in concentrations of 0.1 to 3.5 micromolar aqueous OH ([OH]aq). The source of this burst is previously unrecognized chemistry between iron(II) and peracids. The contribution of the "OH burst" to total OH in droplets varies widely, but it ranges up to a factor of 5 larger than previously known sources. Thus, this new process will substantially enhance the impact of clouds on aerosol properties.

5.
Anal Chem ; 90(16): 9716-9724, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29969232

RESUMEN

The interaction between atmospheric aerosol particles and water vapor influences aerosol size, phase, and composition, parameters which critically influence their impacts in the atmosphere. Methods to accurately measure aerosol water uptake for a wide range of particle types are therefore merited. We present here a new method for characterizing aerosol hygroscopicity, an impaction stage containing a microelectromechanical systems (MEMS) microresonator. We find that deliquescence and efflorescence relative humidities (RHs) of sodium chloride and ammonium sulfate are easily diagnosed via changes in resonant frequency and peak sharpness. These agree well with literature values and thermodynamic models. Furthermore, we demonstrate that, unlike other resonator-based techniques, full hygroscopic growth curves can be derived, including for an inorganic-organic mixture (sodium chloride and malonic acid) which remains liquid at all RHs. The response of the microresonator frequency to temperature and particle mechanical properties and the resulting limitations when measuring hygroscopicity are discussed. MEMS resonators show great potential as miniaturized ambient aerosol mass monitors, and future work will consider the applicability of our approach to complex ambient samples. The technique also offers an alternative to established methods for accurate thermodynamic measurements in the laboratory.

6.
Anal Chem ; 90(15): 8838-8844, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29956916

RESUMEN

Raman spectroscopy is a powerful tool for investigating chemical composition. Coupling Raman spectroscopy with optical microscopy (Raman microspectroscopy) and optical trapping (Raman tweezers) allows microscopic length scales and, hence, femtolitre volumes to be probed. Raman microspectroscopy typically uses UV/visible excitation lasers, but many samples, including organic molecules and complex tissue samples, fluoresce strongly at these wavelengths. Here we report the development and application of dispersive Raman microspectroscopy designed around a near-infrared continuous wave 1064 nm excitation light source. We analyze microparticles (1-5 µm diameter) composed of polystyrene latex and from three real-world pressurized metered dose inhalers (pMDIs) used in the treatment of asthma: salmeterol xinafoate (Serevent), salbutamol sulfate (Salamol), and ciclesonide (Alvesco). For the first time, single particles are captured, optically levitated, and analyzed using the same 1064 nm laser, which permits a convenient nondestructive chemical analysis of the true aerosol phase. We show that particles exhibiting overwhelming fluorescence using a visible laser (514.5 nm) can be successfully analyzed with 1064 nm excitation, irrespective of sample composition and irradiation time. Spectra are acquired rapidly (1-5 min) with a wavelength resolution of 2 nm over a wide wavenumber range (500-3100 cm-1). This is despite the microscopic sample size and low Raman scattering efficiency at 1064 nm. Spectra of individual pMDI particles compare well to bulk samples, and the Serevent pMDI delivers the thermodynamically preferred crystal form of salmeterol xinafoate. 1064 nm dispersive Raman microspectroscopy is a promising technique that could see diverse applications for samples where fluorescence-free characterization is required with high spatial resolution.


Asunto(s)
Albuterol/química , Antialérgicos/química , Broncodilatadores/química , Pinzas Ópticas , Pregnenodionas/química , Xinafoato de Salmeterol/química , Espectrometría Raman/instrumentación , Aerosoles/administración & dosificación , Aerosoles/química , Albuterol/administración & dosificación , Antialérgicos/administración & dosificación , Asma/tratamiento farmacológico , Broncodilatadores/administración & dosificación , Diseño de Equipo , Fluorescencia , Humanos , Inhaladores de Dosis Medida , Tamaño de la Partícula , Pregnenodionas/administración & dosificación , Xinafoato de Salmeterol/administración & dosificación
7.
Environ Sci Technol ; 47(13): 7324-31, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23710930

RESUMEN

Organic compounds comprise a major fraction of tropospheric aerosol and understanding their chemical complexity is a key factor for determining their climate and health effects. We present and characterize here a new online technique for measuring the detailed chemical composition of organic aerosols, namely extractive electrospray ionization mass spectrometry (EESI-MS). Aerosol particles composed of soluble organic compounds were extracted into and ionized by a solvent electrospray, producing molecular ions from the aerosol with minimal fragmentation. We demonstrate here that the technique has a time resolution of seconds and is capable of making stable measurements over several hours. The ion signal in the MS was linearly correlated with the mass of aerosol delivered to the EESI source over the range tested (3-600 µg/m(3)) and was independent of particle size and liquid water content, suggesting that the entire particle bulk is extracted for analysis. Tandem MS measurements enabled detection of known analytes in the sub-µg/m(3) range. Proof-of-principle measurements of the ozonolysis of oleic acid aerosol (20 µg/m(3)) revealed the formation of a variety of oxidation products in good agreement with previous offline studies. This demonstrates the technique's potential for studying the product-resolved kinetics of aerosol-phase chemistry at a molecular level with high sensitivity and time resolution.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/instrumentación , Sistemas en Línea , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Aerosoles/química , Contaminantes Atmosféricos/química , Monitoreo del Ambiente/métodos , Ácido Oléico/análisis , Ácido Oléico/química , Ozono/química , Espectrometría de Masas en Tándem , Tartratos/análisis
8.
Phys Chem Chem Phys ; 14(22): 8023-31, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22532101

RESUMEN

Atmospheric aerosol particles are important in many atmospheric processes such as: light scattering, light absorption, and cloud formation. Oxidation reactions continuously change the chemical composition of aerosol particles, especially the organic mass component, which is often the dominant fraction. These ageing processes are poorly understood but are known to significantly affect the cloud formation potential of aerosol particles. In this study we investigate the effect of humidity and ozone on the chemical composition of two model organic aerosol systems: oleic acid and arachidonic acid. These two acids are also compared to maleic acid an aerosol system we have previously studied using the same techniques. The role of relative humidity in the oxidation scheme of the three carboxylic acids is very compound specific. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. The particle phase has a strong effect on the particle processing and the effect of water on the oxidation processes. Oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In addition, water does not influence the oxidation reactions of oleic acid particles, which is partly explained by the structure of oxidation intermediates. The low water solubility of oleic acid and its ozonolysis products limits the effect of water. This is very different for maleic and arachidonic acid, which change their phase from liquid to solid upon oxidation or upon changes in humidity. In a solid particle the reactions of ozone and water with the organic particle are restricted to the particle surface and hence different regimes of reactivity are dictated by particle phase. The potential relevance of these three model systems to mimic ambient atmospheric processes is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...