Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300172

RESUMEN

Translesion DNA synthesis (TLS) is a cellular process that enables the bypass of DNA lesions encountered during DNA replication and is emerging as a primary target of chemotherapy. Among vertebrate DNA polymerases, polymerase κ (Polκ) has the distinctive ability to bypass minor groove DNA adducts in vitro. However, Polκ is also required for cells to overcome major groove DNA adducts but the basis of this requirement is unclear. Here, we combine CRISPR base-editor screening technology in human cells with TLS analysis of defined DNA lesions in Xenopus egg extracts to unravel the functions and regulations of Polκ during lesion bypass. Strikingly, we show that Polκ has two main functions during TLS, which are differentially regulated by Rev1 binding. On the one hand, Polκ is essential to replicate across a minor groove DNA lesion in a process that depends on PCNA ubiquitylation but is independent of Rev1. On the other hand, through its cooperative interaction with Rev1 and ubiquitylated PCNA, Polκ appears to stabilize the Rev1-Polζ extension complex on DNA to allow extension past major groove DNA lesions and abasic sites, in a process that is independent of Polκ's catalytic activity. Together, our work identifies catalytic and noncatalytic functions of Polκ in TLS and reveals important regulatory mechanisms underlying the unique domain architecture present at the C-terminal end of Y-family TLS polymerases.

2.
Nucleic Acids Res ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287133

RESUMEN

G-quadruplexes (G4s) are non-canonical nucleic acid structures that form in guanine (G)-rich genomic regions. X-linked dystonia parkinsonism (XDP) is an inherited neurodegenerative disease in which a SINE-VNTR-Alu (SVA) retrotransposon, characterised by amplification of a G-rich repeat, is inserted into the coding sequence of TAF1, a key partner of RNA polymerase II. XDP SVA alters TAF1 expression, but the cause of this outcome in XDP remains unknown. To assess whether G4s form in XDP SVA and affect TAF1 expression, we first characterised bioinformatically predicted XDP SVA G4s in vitro. We next showed that highly stable G4s can form and stop polymerase amplification at the SVA region from patient-derived fibroblasts and neural progenitor cells. Using chromatin immunoprecipitazion (ChIP) with an anti-G4 antibody coupled to sequencing or quantitative PCR, we showed that XDP SVA G4s are folded even when embedded in a chromatin context in patient-derived cells. Using the G4 ligands BRACO-19 and quarfloxin and total RNA-sequencing analysis, we showed that stabilisation of the XDP SVA G4s reduces TAF1 transcripts downstream and around the SVA, and increases upstream transcripts, while destabilisation using the G4 unfolder PhpC increases TAF1 transcripts. Our data indicate that G4 formation in the XDP SVA is a major cause of aberrant TAF1 expression, opening the way for the development of strategies to unfold G4s and potentially target the disease.

3.
Methods Enzymol ; 695: 193-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38521585

RESUMEN

G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that can form at guanine-rich sequences of DNA and RNA in every kingdom of life. At the DNA level, G4s can form throughout genomes but they are prevalently found in promoter regions and at telomeres, and they have been attributed functions spanning from transcriptional regulation, to control of DNA replication, to maintenance of chromosome ends. Our understanding of the functions of G4s in cells has greatly improved with the development of specific anti-G4 antibodies, which allow the visualization of G4s by immunofluorescence but also the mapping of these secondary DNA structures genome wide. Whole genome identification of the location and abundance of G4s with techniques such as Chromatin Immunoprecipitation coupled with sequencing (ChIP-Seq) and Cleavage Under Target and Tagmentation (CUT&Tag) has allowed the profiling of G4 distribution across distinct cell types and deepen the understanding of G4 functions, particularly in the regulation of transcription. Crucial for these types of genome-wide studies is the availability of an anti-G4 antibody preparation with high affinity and specificity. Here, we describe a protocol for the expression and purification of the anti-DNA G4 structure antibody (BG4) first developed by the Balasubramanian group, which has been proven to selectively recognize G4 structures both in vitro and within cells, and which has great applicability in high-throughput techniques. We provide a detailed, step-by-step protocol to obtain active BG4 starting from a commercially available expression plasmid. We also describe three different approaches to validate the activity of the BG4 preparation.


Asunto(s)
ADN , G-Cuádruplex , ADN/genética , ADN/química , Genoma , Replicación del ADN , Plásmidos/genética , Anticuerpos
4.
Nucleic Acids Res ; 51(16): 8309-8321, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37528048

RESUMEN

i-Motifs (iMs) are four-stranded DNA structures that form at cytosine (C)-rich sequences in acidic conditions in vitro. Their formation in cells is still under debate. We performed CUT&Tag sequencing using the anti-iM antibody iMab and showed that iMs form within the human genome in live cells. We mapped iMs in two human cell lines and recovered C-rich sequences that were confirmed to fold into iMs in vitro. We found that iMs in cells are mainly present at actively transcribing gene promoters, in open chromatin regions, they overlap with R-loops, and their abundance and distribution are specific to each cell type. iMs with both long and short C-tracts were recovered, further extending the relevance of iMs. By simultaneously mapping G-quadruplexes (G4s), which form at guanine-rich regions, and comparing the results with iMs, we proved that the two structures can form in independent regions; however, when both iMs and G4s are present in the same genomic tract, their formation is enhanced. iMs and G4s were mainly found at genes with low and high transcription rates, respectively. Our findings support the in vivo formation of iM structures and provide new insights into their interplay with G4s as new regulatory elements in the human genome.


Among the secondary structures alternative to the DNA double helix, i-Motifs (iMs) and G-quadruplexes (G4s) are four-stranded non-canonical nucleic acid structures that form in cytosine- and guanine-rich regions, respectively. Because iMs fold in vitro under acidic conditions, they were long thought to form only in vitro. We now show that iMs, like G4s, form in live human cells mainly at gene promoters in open chromatin. iMs that are unstable in vitro still form in cells. iMs and G4s are cell-type specific and associated with increased transcription; however, transcript levels are remarkably different: low for iMs and high for G4s, indicating their distinct activity as regulators of the cell transcriptome. The iM/G4 interplay may represent a novel therapeutic target in disease.


Asunto(s)
G-Cuádruplex , Regulación de la Expresión Génica , Humanos , Secuencias Reguladoras de Ácidos Nucleicos , ADN/genética , ADN/química , Genómica
5.
EMBO Rep ; 23(4): e53639, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35156773

RESUMEN

DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI-FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)-mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error-free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error-free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI-deficient cells are exquisitely sensitive to ICL-inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR-mediated ICL repair is defective, and breaks are instead re-ligated by polymerase θ-dependent microhomology-mediated end-joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error-free ICL repair.


Asunto(s)
Anemia de Fanconi , ADN , Daño del ADN , Reparación del ADN , Replicación del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Humanos
6.
EMBO J ; 40(18): e107413, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34346517

RESUMEN

DNA-protein crosslinks (DPCs) obstruct essential DNA transactions, posing a serious threat to genome stability and functionality. DPCs are proteolytically processed in a ubiquitin- and DNA replication-dependent manner by SPRTN and the proteasome but can also be resolved via targeted SUMOylation. However, the mechanistic basis of SUMO-mediated DPC resolution and its interplay with replication-coupled DPC repair remain unclear. Here, we show that the SUMO-targeted ubiquitin ligase RNF4 defines a major pathway for ubiquitylation and proteasomal clearance of SUMOylated DPCs in the absence of DNA replication. Importantly, SUMO modifications of DPCs neither stimulate nor inhibit their rapid DNA replication-coupled proteolysis. Instead, DPC SUMOylation provides a critical salvage mechanism to remove DPCs formed after DNA replication, as DPCs on duplex DNA do not activate interphase DNA damage checkpoints. Consequently, in the absence of the SUMO-RNF4 pathway cells are able to enter mitosis with a high load of unresolved DPCs, leading to defective chromosome segregation and cell death. Collectively, these findings provide mechanistic insights into SUMO-driven pathways underlying replication-independent DPC resolution and highlight their critical importance in maintaining chromosome stability and cellular fitness.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteínas Nucleares/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Inestabilidad Genómica , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional , Sumoilación , Ubiquitina/metabolismo , Ubiquitinación
7.
Mol Cell ; 81(3): 442-458.e9, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33321094

RESUMEN

Lesions on DNA uncouple DNA synthesis from the replisome, generating stretches of unreplicated single-stranded DNA (ssDNA) behind the replication fork. These ssDNA gaps need to be filled in to complete DNA duplication. Gap-filling synthesis involves either translesion DNA synthesis (TLS) or template switching (TS). Controlling these processes, ubiquitylated PCNA recruits many proteins that dictate pathway choice, but the enzymes regulating PCNA ubiquitylation in vertebrates remain poorly defined. Here we report that the E3 ubiquitin ligase RFWD3 promotes ubiquitylation of proteins on ssDNA. The absence of RFWD3 leads to a profound defect in recruitment of key repair and signaling factors to damaged chromatin. As a result, PCNA ubiquitylation is inhibited without RFWD3, and TLS across different DNA lesions is drastically impaired. We propose that RFWD3 is an essential coordinator of the response to ssDNA gaps, where it promotes ubiquitylation to drive recruitment of effectors of PCNA ubiquitylation and DNA damage bypass.


Asunto(s)
Cromatina/metabolismo , Roturas del ADN de Cadena Simple , Reparación del ADN , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Cromatina/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Xenopus laevis
8.
Nature ; 579(7800): 499-500, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32210381
9.
Mol Cell ; 73(3): 574-588.e7, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595436

RESUMEN

DNA-protein crosslinks (DPCs) are bulky lesions that interfere with DNA metabolism and therefore threaten genomic integrity. Recent studies implicate the metalloprotease SPRTN in S phase removal of DPCs, but how SPRTN is targeted to DPCs during DNA replication is unknown. Using Xenopus egg extracts that recapitulate replication-coupled DPC proteolysis, we show that DPCs can be degraded by SPRTN or the proteasome, which act as independent DPC proteases. Proteasome recruitment requires DPC polyubiquitylation, which is partially dependent on the ubiquitin ligase activity of TRAIP. In contrast, SPRTN-mediated DPC degradation does not require DPC polyubiquitylation but instead depends on nascent strand extension to within a few nucleotides of the lesion, implying that polymerase stalling at the DPC activates SPRTN on both leading and lagging strand templates. Our results demonstrate that SPRTN and proteasome activities are coupled to DNA replication by distinct mechanisms that promote replication across immovable protein barriers.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN/biosíntesis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , ADN/química , ADN/genética , Femenino , Masculino , Conformación de Ácido Nucleico , Complejo de la Endopetidasa Proteasomal/genética , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Células Sf9 , Relación Estructura-Actividad , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis/genética
10.
DNA Repair (Amst) ; 42: 11-25, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27130983

RESUMEN

Homologous recombination (HR) is essential for maintenance of genome stability through double-strand break (DSB) repair, but at the same time HR can lead to loss of heterozygosity and uncontrolled recombination can be genotoxic. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to modulate recombination, but the exact mechanism of this regulation remains unclear. Here we show that SUMOylation stabilizes the interaction between the recombination mediator Rad52 and its paralogue Rad59 in Saccharomyces cerevisiae. Although Rad59 SUMOylation is not required for survival after genotoxic stress, it affects the outcome of recombination to promote conservative DNA repair. In some genetic assays, Rad52 and Rad59 SUMOylation act synergistically. Collectively, our data indicate that the described SUMO modifications affect the balance between conservative and non-conservative mechanisms of HR.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Mitosis/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Sumoilación , Cromosomas Fúngicos/genética , Daño del ADN , Proteínas de Unión al ADN/química , Lisina/metabolismo , Dominios Proteicos , Proteína Recombinante y Reparadora de ADN Rad52/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
11.
Genes Dev ; 30(6): 700-17, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26966248

RESUMEN

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.


Asunto(s)
Intercambio Genético/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , ARN Helicasas DEAD-box/genética , Eliminación de Gen , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Proteínas de Unión a Telómeros/genética
12.
Cell Cycle ; 15(2): 176-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26701150

RESUMEN

Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.


Asunto(s)
Proteínas Portadoras/genética , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Mitosis , Animales , Linfocitos B/citología , Linfocitos B/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular , Pollos , ADN/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitinación
13.
Nat Commun ; 6: 6533, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25817432

RESUMEN

DNA replication stress is a source of genomic instability. Here we identify changed mutation rate 1 (Cmr1) as a factor involved in the response to DNA replication stress in Saccharomyces cerevisiae and show that Cmr1--together with Mrc1/Claspin, Pph3, the chaperonin containing TCP1 (CCT) and 25 other proteins--define a novel intranuclear quality control compartment (INQ) that sequesters misfolded, ubiquitylated and sumoylated proteins in response to genotoxic stress. The diversity of proteins that localize to INQ indicates that other biological processes such as cell cycle progression, chromatin and mitotic spindle organization may also be regulated through INQ. Similar to Cmr1, its human orthologue WDR76 responds to proteasome inhibition and DNA damage by relocalizing to nuclear foci and physically associating with CCT, suggesting an evolutionarily conserved biological function. We propose that Cmr1/WDR76 plays a role in the recovery from genotoxic stress through regulation of the turnover of sumoylated and phosphorylated proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Chaperonina con TCP-1/metabolismo , Cromatina/metabolismo , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Mutación , Fosfoproteínas Fosfatasas/genética , Complejo de la Endopetidasa Proteasomal , Pliegue de Proteína , Proteínas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación , Ubiquitinación
14.
J Cell Biol ; 204(1): 45-59, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24379413

RESUMEN

DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination.


Asunto(s)
Anafase/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Puntos de Control del Ciclo Celular/genética , Línea Celular , Pollos , Cromatina/genética , Cromatina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Gene ; 519(1): 182-6, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23403232

RESUMEN

Here we report the physical mapping of the rad56-1 mutation to the NAT3 gene, which encodes the catalytic subunit of the NatB N-terminal acetyltransferase in Saccharomyces cerevisiae. Mutation of RAD56 causes sensitivity to X-rays, methyl methanesulfonate, zeocin, camptothecin and hydroxyurea, but not to UV light, suggesting that N-terminal acetylation of specific DNA repair proteins is important for efficient DNA repair.


Asunto(s)
Mapeo Cromosómico , Clonación Molecular , Mutación , Acetiltransferasa B N-Terminal/genética , Proteínas de Saccharomyces cerevisiae/genética , Acetilación , Bleomicina/efectos adversos , Camptotecina/efectos adversos , Daño del ADN , Reparación del ADN , ADN de Hongos/genética , Hidroxiurea/efectos adversos , Metilmetanosulfonato/efectos adversos , Acetiltransferasa B N-Terminal/metabolismo , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Rayos X/efectos adversos
16.
Methods Mol Biol ; 920: 433-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22941621

RESUMEN

Fluorescence microscopy of the DNA damage response in living cells stands out from many other DNA repair assays by its ability to monitor the response to individual DNA lesions in single cells. This is particularly true in yeast, where the frequency of spontaneous DNA lesions is relatively low compared to organisms with much larger genomes such as mammalian cells. Single cell analysis of individual DNA lesions allows specific events in the DNA damage response to be correlated with cell morphology, cell cycle phase, and other specific characteristics of a particular cell. Moreover, fluorescence live cell imaging allows for multiple cellular markers to be monitored over several hours. This chapter reviews useful fluorescent markers and genotoxic agents for studying the DNA damage response in living cells and provides protocols for live cell imaging, time-lapse microscopy, and for induction of site-specific DNA lesions.


Asunto(s)
Daño del ADN , Microscopía Fluorescente/métodos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Supervivencia Celular , Reparación del ADN , ADN de Hongos/genética , Marcadores Genéticos/genética , Recombinación Genética , Factores de Tiempo
17.
Nat Cell Biol ; 11(8): 980-7, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19597487

RESUMEN

The ends of linear eukaryotic chromosomes are protected by telomeres, which serve to ensure proper chromosome replication and to prevent spurious recombination at chromosome ends. In this study, we show by single cell analysis that in the absence of telomerase, a single short telomere is sufficient to induce the recruitment of checkpoint and recombination proteins. Notably, a DNA damage response at eroded telomeres starts many generations before senescence and is characterized by the recruitment of Cdc13 (cell division cycle 13), replication protein A, DNA damage checkpoint proteins and the DNA repair protein Rad52 into a single focus. Moreover, we show that eroded telomeres, although remaining at the nuclear periphery, move to the nuclear pore complex. Our results link the DNA damage response at eroded telomeres to changes in subnuclear localization and suggest the existence of collapsed replication forks at eroded telomeres.


Asunto(s)
Daño del ADN , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inmunoprecipitación de Cromatina , Reparación del ADN , ADN de Cadena Simple/genética , Fase G2 , Haploidia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...