Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 339: 122268, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823931

RESUMEN

The influence of locust bean gum (LBG) galactomannans (GMs) molecular weight (Mw) to assemble microparticulate systems was evaluated, and carriers for deep lung delivery were developed. A commercial batch of LBG with a mannose/galactose (M/G) ratio of 2.4 (batch 1) was used to study the influence of different microwave partial acid hydrolysis conditions on carbohydrate composition, glycosidic linkages, and aqueous solutions viscosity. The microwave treatment did not affect the composition, presenting 4-Man (36-42 %), 4,6-Man (27-35 %), and T-Gal (24-25 %) as the main glycosidic linkages. Depolymerization led to a viscosity reduction (≤0.005 Pa·s) with no major impact on polysaccharide debranching. The structural composition of the LBG galactomannans were further elucidated with sequence-specific proteins using carbohydrate microarray technologies. A second batch of LBG (M/G 3.3) was used to study the impact of GMs with different Mw on microparticle assembling, characteristics, and insulin release kinetics. The low-Mw GMs microparticles led to a faster release (20 min) than the higher-Mw (40 min) ones, impacting the release kinetics. All microparticles exhibited a safety profile to cells of the respiratory tract. However, only the higher-Mw GMs allowed the assembly of microparticles with sizes suitable for this type of administration.


Asunto(s)
Galactosa , Mananos , Peso Molecular , Gomas de Plantas , Mananos/química , Galactosa/química , Galactosa/análogos & derivados , Gomas de Plantas/química , Humanos , Pulmón/metabolismo , Portadores de Fármacos/química , Tamaño de la Partícula , Viscosidad , Insulina/química , Insulina/administración & dosificación , Liberación de Fármacos , Galactanos/química , Manosa/química , Animales
2.
Pharmaceutics ; 15(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37111698

RESUMEN

Non-invasive routes for insulin delivery are emerging as alternatives to currently painful subcutaneous injections. For pulmonary delivery, formulations may be in powdered particle form, using carriers such as polysaccharides to stabilise the active principle. Roasted coffee beans and spent coffee grounds (SCG) are rich in polysaccharides, namely galactomannans and arabinogalactans. In this work, the polysaccharides were obtained from roasted coffee and SCG for the preparation of insulin-loaded microparticles. The galactomannan and arabinogalactan-rich fractions of coffee beverages were purified by ultrafiltration and separated by graded ethanol precipitations at 50% and 75%, respectively. For SCG, galactomannan-rich and arabinogalactan-rich fractions were recovered by microwave-assisted extraction at 150 °C and at 180 °C, followed by ultrafiltration. Each extract was spray-dried with insulin 10% (w/w). All microparticles had a raisin-like morphology and average diameters of 1-5 µm, which are appropriate for pulmonary delivery. Galactomannan-based microparticles, independently of their source, released insulin in a gradual manner, while arabinogalactan-based ones presented a burst release. The microparticles were seen to be non-cytotoxic for cells representative of the lung, specifically lung epithelial cells (A549) and macrophages (Raw 264.7) up to 1 mg/mL. This work shows how coffee can be a sustainable source of polysaccharide carriers for insulin delivery via the pulmonary route.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...