Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(10): 2006-2017, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38683969

RESUMEN

Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.


Asunto(s)
Conducta Animal , Fenetilaminas , Pez Cebra , Animales , Fenetilaminas/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Masculino , Alucinógenos/farmacología , Psicotrópicos/farmacología , Serotonina/metabolismo , Dopamina/metabolismo
2.
Adv Exp Med Biol ; 1411: 91-104, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949307

RESUMEN

Mounting evidence links psychiatric disorders to central and systemic inflammation. Experimental (animal) models of psychiatric disorders are important tools for translational biopsychiatry research and CNS drug discovery. Current experimental models, most typically involving rodents, continue to reveal shared fundamental pathological pathways and biomarkers underlying the pathogenetic link between brain illnesses and neuroinflammation. Recent data also show that various proinflammatory factors can alter brain neurochemistry, modulating the levels of neurohormones and neurotrophins in neurons and microglia. The role of "active" glia in releasing a wide range of proinflammatory cytokines also implicates glial cells in various psychiatric disorders. Here, we discuss recent animal inflammation-related models of psychiatric disorders, focusing on their translational perspectives and the use of some novel promising model organisms (zebrafish), to better understand the evolutionally conservative role of inflammation in neuropsychiatric conditions.


Asunto(s)
Inflamación , Pez Cebra , Animales , Inflamación/metabolismo , Encéfalo/metabolismo , Modelos Animales , Neuroglía/metabolismo , Microglía/patología
3.
Vet Sci ; 10(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36851400

RESUMEN

Antimicrobial drugs represent a diverse group of widely utilized antibiotic, antifungal, antiparasitic and antiviral agents. Their growing use and clinical importance necessitate our improved understanding of physiological effects of antimicrobial drugs, including their potential effects on the central nervous system (CNS), at molecular, cellular, and behavioral levels. In addition, antimicrobial drugs can alter the composition of gut microbiota, and hence affect the gut-microbiota-brain axis, further modulating brain and behavioral processes. Complementing rodent studies, the zebrafish (Danio rerio) emerges as a powerful model system for screening various antimicrobial drugs, including probing their putative CNS effects. Here, we critically discuss recent evidence on the effects of antimicrobial drugs on brain and behavior in zebrafish, and outline future related lines of research using this aquatic model organism.

4.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36834599

RESUMEN

Psychiatric disorders are highly prevalent brain pathologies that represent an urgent, unmet biomedical problem. Since reliable clinical diagnoses are essential for the treatment of psychiatric disorders, their animal models with robust, relevant behavioral and physiological endpoints become necessary. Zebrafish (Danio rerio) display well-defined, complex behaviors in major neurobehavioral domains which are evolutionarily conserved and strikingly parallel to those seen in rodents and humans. Although zebrafish are increasingly often used to model psychiatric disorders, there are also multiple challenges with such models as well. The field may therefore benefit from a balanced, disease-oriented discussion that considers the clinical prevalence, the pathological complexity, and societal importance of the disorders in question, and the extent of its detalization in zebrafish central nervous system (CNS) studies. Here, we critically discuss the use of zebrafish for modeling human psychiatric disorders in general, and highlight the topics for further in-depth consideration, in order to foster and (re)focus translational biological neuroscience research utilizing zebrafish. Recent developments in molecular biology research utilizing this model species have also been summarized here, collectively calling for a wider use of zebrafish in translational CNS disease modeling.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Trastornos Mentales , Animales , Humanos , Pez Cebra/fisiología , Sistema Nervioso Central/patología , Modelos Animales , Enfermedades del Sistema Nervioso Central/patología , Conducta Animal , Modelos Animales de Enfermedad
5.
Sci Rep ; 12(1): 20836, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460699

RESUMEN

Widespread, debilitating and often treatment-resistant, depression and other stress-related neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although animal models of these disorders are commonly used to study stress pathogenesis, they are often difficult to translate across species into valuable and meaningful clinically relevant data. To address this problem, here we utilized several cross-species/cross-taxon approaches to identify potential evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment of these genes for transcription factors DNA-binding sites down- and up- stream from their genetic sequences. For this, we compared our own RNA-seq brain transcriptomic data obtained from chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients with major depression and their respective healthy control groups. Utilizing these data from the three species, we next analyzed their differential gene expression, gene set enrichment and protein-protein interaction networks, combined with validated tools for data pooling. This approach allowed us to identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as promising, evolutionarily conserved and shared affective 'hub' protein targets, as well as to propose a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches may advance cross-species brain transcriptomic analyses, and call for further cross-species studies into putative shared molecular mechanisms of affective pathogenesis.


Asunto(s)
Trastorno Depresivo Mayor , Pez Cebra , Humanos , Animales , Ratas , Pez Cebra/genética , Transcriptoma , Trastornos del Humor , Encéfalo
6.
ACS Chem Neurosci ; 13(13): 1902-1922, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35671176

RESUMEN

Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.


Asunto(s)
Alucinógenos , Animales , Inteligencia Artificial , Conducta Animal , Alucinógenos/química , Alucinógenos/farmacología , Fenetilaminas/química , Fenetilaminas/farmacología , Pez Cebra
7.
J Psychopharmacol ; 36(7): 892-902, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35713386

RESUMEN

BACKGROUND: Cognitive deficits represent an urgent biomedical problem, and are commonly reduced by nootropic drugs. Animal models, including both rodents and zebrafish, offer a valuable tool for studying cognitive phenotypes and screening novel nootropics. Beta-alanine and its derivatives have recently been proposed to exert nootropic activity. AIMS: This study aimed to characterize putative nootropic profile of a novel ß-alanine analogue, 1,3-diaminopropane (MB-005), in adult zebrafish. METHODS: Nootropic profile of MB-005 was assessed in adult zebrafish in the novel tank and conditioned place aversion (CPA) tests acutely, and in cued-learning plus-maze (PMT) tests chronically. RESULTS/OUTCOMES: MB-005 did not alter zebrafish anxiety-like behavior or monoamine neurochemistry acutely, improved short-term memory in the CPA test, but impaired cognitive performance in both CPA and PMT tests chronically. CONCLUSIONS/INTERPRETATION: This study reveals high sensitivity of zebrafish cognitive phenotypes to MB-005, suggesting it as a potential novel cognitive enhancer acutely, but raises concerns over its cognitive (and, possibly, other) side-effects chronically.


Asunto(s)
Nootrópicos , Animales , Ansiedad , Conducta Animal , Señales (Psicología) , Nootrópicos/farmacología , Pez Cebra , beta-Alanina/farmacología
8.
Sci Rep ; 11(1): 14289, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34253753

RESUMEN

Long-term recurrent stress is a common cause of neuropsychiatric disorders. Animal models are widely used to study the pathogenesis of stress-related psychiatric disorders. The zebrafish (Danio rerio) is emerging as a powerful tool to study chronic stress and its mechanisms. Here, we developed a prolonged 11-week chronic unpredictable stress (PCUS) model in zebrafish to more fully mimic chronic stress in human populations. We also examined behavioral and neurochemical alterations in zebrafish, and attempted to modulate these states by 3-week treatment with an antidepressant fluoxetine, a neuroprotective omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA), a pro-inflammatory endotoxin lipopolysaccharide (LPS), and their combinations. Overall, PCUS induced severe anxiety and elevated norepinephrine levels, whereas fluoxetine (alone or combined with other agents) corrected most of these behavioral deficits. While EPA and LPS alone had little effects on the zebrafish PCUS-induced anxiety behavior, both fluoxetine (alone or in combination) and EPA restored norepinephrine levels, whereas LPS + EPA increased dopamine levels. As these data support the validity of PCUS as an effective tool to study stress-related pathologies in zebrafish, further research is needed into the ability of various conventional and novel treatments to modulate behavioral and neurochemical biomarkers of chronic stress in this model organism.


Asunto(s)
Ácido Eicosapentaenoico/metabolismo , Fluoxetina/farmacología , Lipopolisacáridos/química , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/farmacología , Conducta Animal , Modelos Animales de Enfermedad , Emociones , Endotoxinas/metabolismo , Neuroquímica/métodos , Norepinefrina/sangre , Fenotipo , Estrés Fisiológico , Pez Cebra
9.
Pharmacol Biochem Behav ; 207: 173205, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33991579

RESUMEN

Anxiety is the most prevalent brain disorder and a common cause of human disability. Animal models are critical for understanding anxiety pathogenesis and its pharmacotherapy. The zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in anxiety research and anxiolytic drug screening. High similarity between human, rodent and zebrafish molecular targets implies shared signaling pathways involved in anxiety pathogenesis. However, mounting evidence shows that zebrafish behavior can be modulated by drugs beyond conventional anxiolytics or anxiogenics. Furthermore, these effects may differ from human and/or rodent responses, as such 'unconventional' drugs may affect zebrafish behavior despite having no such profiles (or exerting opposite effects) in humans or rodents. Here, we discuss the effects of several putative unconventional anxiotropic drugs (aspirin, lysergic acid diethylamide (LSD), nicotine, naloxone and naltrexone) and their potential mechanisms of action in zebrafish. Emphasizing the growing utility of zebrafish models in CNS drug discovery, such unconventional anxiety pharmacology may provide important, evolutionarily relevant insights into complex regulation of anxiety in biological systems. Albeit seemingly complicating direct translation from zebrafish into clinical phenotypes, this knowledge may instead foster the development of novel CNS drugs, eventually facilitating innovative treatment of patients based on novel 'unconventional' targets identified in fish models.


Asunto(s)
Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Pez Cebra , Animales , Ansiedad/metabolismo , Aspirina/farmacología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Dietilamida del Ácido Lisérgico/farmacología , Actividad Motora/efectos de los fármacos , Naloxona/farmacología , Naltrexona/farmacología , Nicotina/farmacología
10.
Neurosci Biobehav Rev ; 124: 1-15, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33359096

RESUMEN

Color is an important environmental factor that in multiple ways affects human and animal behavior and physiology. Widely used in neuroscience research, various experimental (animal) models may help improve our understanding of how different colors impact brain and behavioral processes. Complementing laboratory rodents, the zebrafish (Danio rerio) is rapidly emerging as an important novel model species to explore complex neurobehavioral processes. The growing utility of zebrafish in biomedicine makes it timely to consider the role of colors in their behavioral and physiological responses. Here, we summarize mounting evidence implicating colors as a critical variable in zebrafish models and neurobehavioral traits, with a particular relevance to CNS disease modeling, genetic and pharmacological modulation, as well as environmental enrichment and animal welfare. We also discuss the growing value of zebrafish models to study color neurobiology and color-related neurobehavioral phenomics, and outline future directions of research in this field.


Asunto(s)
Conducta Animal , Pez Cebra , Animales , Encéfalo , Modelos Animales de Enfermedad , Modelos Animales , Investigación Biomédica Traslacional
11.
J Ethnopharmacol ; 267: 113383, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32918992

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Although Traditional Chinese Medicine (TCM) has a millennia-long history of treating human brain disorders, its complex multi-target mechanisms of action remain poorly understood. Animal models are currently widely used to probe the effects of various TCMs on brain and behavior. The zebrafish (Danio rerio) has recently emerged as a novel vertebrate model organism for neuroscience research, and is increasingly applied for CNS drug screening and development. AIM OF THE STUDY: As zebrafish models are only beginning to be applied to studying TCM, we aim to provide a comprehensive review of the TCM effects on brain and behavior in this fish model species. MATERIALS AND METHODS: A comprehensive search of published literature was conducted using biomedical databases (Web of Science, Pubmed, Sciencedirect, Google Scholar and China National Knowledge Internet, CNKI), with key search words zebrafish, brain, Traditional Chinese Medicine, herbs, CNS, behavior. RESULTS: We recognize the developing utility of zebrafish for studying TCM, as well as outline the existing model limitations, problems and challenges, as well as future directions of research in this field. CONCLUSIONS: We demonstrate the growing value of zebrafish models for studying TCM, aiming to improve our understanding of TCM' therapeutic mechanisms and potential in treating brain disorders.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Sistema Nervioso Central/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Animales , Conducta Animal/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiopatología , Modelos Animales , Pez Cebra
12.
Artículo en Inglés | MEDLINE | ID: mdl-32889031

RESUMEN

Despite high prevalence, medical impact and societal burden, anxiety, depression and other affective disorders remain poorly understood and treated. Clinical complexity and polygenic nature complicate their analyses, often revealing genetic overlap and cross-disorder heritability. However, the interplay or overlaps between disordered phenotypes can also be based on shared molecular pathways and 'crosstalk' mechanisms, which themselves may be genetically determined. We have earlier predicted (Kalueff et al., 2014) a new class of 'interlinking' brain genes that do not affect the disordered phenotypes per se, but can instead specifically determine their interrelatedness. To test this hypothesis experimentally, here we applied a well-established rodent chronic social defeat stress model, known to progress in C57BL/6J mice from the Anxiety-like stage on Day 10 to Depression-like stage on Day 20. The present study analyzed mouse whole-genome expression in the prefrontal cortex and hippocampus during the Day 10, the Transitional (Day 15) and Day 20 stages in this model. Our main question here was whether a putative the Transitional stage (Day 15) would reveal distinct characteristic genomic responses from Days 10 and 20 of the model, thus reflecting unique molecular events underlining the transformation or switch from anxiety to depression pathogenesis. Overall, while in the Day 10 (Anxiety) group both brain regions showed major genomic alterations in various neurotransmitter signaling pathways, the Day 15 (Transitional) group revealed uniquely downregulated astrocyte-related genes, and the Day 20 (Depression) group demonstrated multiple downregulated genes of cell adhesion, inflammation and ion transport pathways. Together, these results reveal a complex temporal dynamics of mouse affective phenotypes as they develop. Our genomic profiling findings provide first experimental support to the idea that novel brain genes (activated here only during the Transitional stage) may uniquely integrate anxiety and depression pathogenesis and, hence, determine the progression from one pathological state to another. This concept can potentially be extended to other brain conditions as well. This preclinical study also further implicates cilial and astrocytal mechanisms in the pathogenesis of affective disorders.


Asunto(s)
Afecto/fisiología , Trastornos de Ansiedad/genética , Hipocampo/metabolismo , Corteza Prefrontal/metabolismo , Estrés Psicológico/genética , Animales , Ansiedad/genética , Ansiedad/metabolismo , Trastornos de Ansiedad/metabolismo , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Genoma , Ratones , Conducta Social , Estrés Psicológico/metabolismo
13.
Brain Res Bull ; 167: 48-55, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249261

RESUMEN

3,4-Dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700) is a selective µ-opioid receptor agonist originally synthesized as a prospective analgesic drug. Several times more potent than morphine, U-47700 has high abuse potential and may cause clinical neurotoxicity, euphoria, respiratory depression and occasional mortality. U-47700 also evokes analgesia, sedation and euphoria-like states in both humans and rodents. Despite the growing use and abuse of U-47700, its psychopharmacological and toxicological profiles in vivo remain poorly understood. The zebrafish (Danio rerio) is rapidly becoming a popular aquatic model organism for central nervous system (CNS) disease modeling and drug discovery. Here, we examine acute (1, 5, 10, 25 and 50 mg/L for 20-min) and chronic (0.1, 0.5 and 1 mg/L for 14 days) effects of U-47700 in adult zebrafish. Overall, we found overt sedation evoked in fish by acute, and hyperlocomotion with an anxiolytic-like action by chronic, drug treatments. Acute treatment with 1 and 10 mg/L U-47700 also resulted in detectable amounts of this drug in the brain samples, supporting its permeability through the blood-brain barrier. Collectively, these findings emphasize complex dose- and treatment-dependent CNS effects of U-47700 following its acute and chronic administration. Our study also supports high sensitivity of zebrafish to U-47700, and suggests these aquatic models as promising in-vivo screens for probing potential CNS effects evoked by novel synthetic opioid drugs.


Asunto(s)
Analgésicos Opioides/farmacología , Conducta Animal/efectos de los fármacos , Benzamidas/farmacología , Encéfalo/efectos de los fármacos , Animales , Pez Cebra
14.
Brain Res Bull ; 166: 44-53, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33027679

RESUMEN

Neuroglia, including microglia and astrocytes, is a critical component of the central nervous system (CNS) that interacts with neurons to modulate brain activity, development, metabolism and signaling pathways. Thus, a better understanding of the role of neuroglia in the brain is critical. Complementing clinical and rodent data, the zebrafish (Danio rerio) is rapidly becoming an important model organism to probe the role of neuroglia in brain disorders. With high genetic and physiological similarity to humans and rodents, zebrafish possess some common (shared), as well as some specific molecular biomarkers and features of neuroglia development and functioning. Studying these common and zebrafish-specific aspects of neuroglia may generate important insights into key brain mechanisms, including neurodevelopmental, neurodegenerative, neuroregenerative and neurological processes. Here, we discuss the biology of neuroglia in humans, rodents and fish, its role in various CNS functions, and further directions of translational research into the role of neuroglia in CNS disorders using zebrafish models.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Modelos Animales de Enfermedad , Neuroglía , Investigación Biomédica Traslacional , Pez Cebra , Animales , Humanos
15.
Sci Rep ; 10(1): 19981, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203921

RESUMEN

Stress-related neuropsychiatric disorders are widespread, debilitating and often treatment-resistant illnesses that represent an urgent unmet biomedical problem. Animal models of these disorders are widely used to study stress pathogenesis. A more recent and historically less utilized model organism, the zebrafish (Danio rerio), is a valuable tool in stress neuroscience research. Utilizing the 5-week chronic unpredictable stress (CUS) model, here we examined brain transcriptomic profiles and complex dynamic behavioral stress responses, as well as neurochemical alterations in adult zebrafish and their correction by chronic antidepressant, fluoxetine, treatment. Overall, CUS induced complex neurochemical and behavioral alterations in zebrafish, including stable anxiety-like behaviors and serotonin metabolism deficits. Chronic fluoxetine (0.1 mg/L for 11 days) rescued most of the observed behavioral and neurochemical responses. Finally, whole-genome brain transcriptomic analyses revealed altered expression of various CNS genes (partially rescued by chronic fluoxetine), including inflammation-, ubiquitin- and arrestin-related genes. Collectively, this supports zebrafish as a valuable translational tool to study stress-related pathogenesis, whose anxiety and serotonergic deficits parallel rodent and clinical studies, and genomic analyses implicate neuroinflammation, structural neuronal remodeling and arrestin/ubiquitin pathways in both stress pathogenesis and its potential therapy.


Asunto(s)
Conducta Animal/fisiología , Estrés Psicológico/fisiopatología , Transcriptoma/fisiología , Pez Cebra/fisiología , Animales , Antidepresivos/farmacología , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Femenino , Fluoxetina/farmacología , Masculino , Estrés Psicológico/tratamiento farmacológico , Transcriptoma/efectos de los fármacos
16.
Neurosci Lett ; 733: 135073, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32446774

RESUMEN

Melatonin is an important pineal hormone that regulates human and animal circadian rhythms and sleep. Mounting clinical and rodent evidence indicates that melatonin also modulates affective behaviors and cognition. The zebrafish (Danio rerio) is rapidly becoming a powerful novel model organism in translational neuroscience research. Here, we evaluate the effects of a 24-h melatonin treatment on behavior and physiology of adult zebrafish with circadian rhythm disturbed by a 24-h light exposure. While such light exposure evoked overt cognitive and neuroendocrine (cortisol) deficits in zebrafish, these effects were reversed by a 24-h melatonin treatment. Collectively, these findings suggest a positive modulation of affective and cognitive phenotypes in zebrafish by melatonin, and reinforce the growing utility of zebrafish models for studying circadian, cognitive and behavioral processes and their neuroendocrine regulation in vivo.


Asunto(s)
Ritmo Circadiano , Cognición/efectos de los fármacos , Hidrocortisona/sangre , Melatonina/farmacología , Animales , Femenino , Masculino , Pez Cebra
17.
Neurotoxicol Teratol ; 79: 106881, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32240749

RESUMEN

Kava kava (Piper methysticum) is a medicinal plant containing kavalactones that exert potent sedative, analgesic and anti-stress action. However, their pharmacological effects and molecular targets remain poorly understood. The zebrafish (Danio rerio) has recently emerged as a powerful new model organism for neuroscience research and drug discovery. Here, we evaluate the effects of acute and chronic exposure to kava and kavalactones on adult zebrafish anxiety, aggression and sociality, as well as on their neurochemical, neuroendocrine and genomic responses. Supporting evolutionarily conserved molecular targets, acute kava and kavalactones evoked dose-dependent behavioral inhibition, upregulated brain expression of early protooncogenes c-fos and c-jun, elevated brain monoamines and lowered whole-body cortisol. Chronic 7-day kava exposure evoked similar behavioral effects, did not alter cortisol levels, and failed to evoke withdrawal-like states upon discontinuation. However, chronic kava upregulated several microglial (iNOS, Egr-2, CD11b), astrocytal (C3, C4B, S100a), epigenetic (ncoa-1) and pro-inflammatory (IL-1ß, IL-6, TNFa) biomarker genes, downregulated CD206 and IL-4, and did not affect major apoptotic genes in the brain. Collectively, this study supports robust, evolutionarily conserved behavioral and physiological effects of kava and kavalactones in zebrafish, implicates brain monoamines in their acute effects, and provides novel important insights into potential role of neuroglial and epigenetic mechanisms in long-term kava use.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Kava , Extractos Vegetales/administración & dosificación , Agresión/efectos de los fármacos , Animales , Ansiedad/prevención & control , Encéfalo/metabolismo , Descubrimiento de Drogas/métodos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Conducta Social , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...