RESUMEN
Primary sclerosing cholangitis (PSC) is an immune-mediated liver disease of unknown pathogenesis, with a high risk to develop cirrhosis and malignancies. Functional dysregulation of T cells and association with genetic polymorphisms in T cell-related genes were previously reported for PSC. Here, we genotyped a representative PSC cohort for several disease-associated risk loci and identified rs56258221 (BACH2/MIR4464) to correlate with not only the peripheral blood T cell immunophenotype but also the functional capacities of naive CD4+ T (CD4+ TN) cells in people with PSC. Mechanistically, rs56258221 leads to an increased expression of miR4464, in turn causing attenuated translation of BACH2, a major gatekeeper of T cell quiescence. Thereby, the fate of CD4+ TN is skewed toward polarization into pro-inflammatory subsets. Clinically, people with PSC carrying rs56258221 show signs of accelerated disease progression. The data presented here highlight the importance of assigning functional outcomes to disease-associated genetic polymorphisms as potential drivers of diseases.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Linfocitos T CD4-Positivos , Colangitis Esclerosante , MicroARNs , Polimorfismo de Nucleótido Simple , Humanos , Colangitis Esclerosante/genética , Colangitis Esclerosante/patología , Colangitis Esclerosante/inmunología , MicroARNs/genética , MicroARNs/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Masculino , Polimorfismo de Nucleótido Simple/genética , Femenino , Predisposición Genética a la Enfermedad , Adulto , Persona de Mediana EdadRESUMEN
INTRODUCTION: Gene therapy has made major achievements in the last few decades. These were in numerous medical disciplines, including metabolic, oncologic, infectious and regenerative. As of today, regulatory agencies, both in the USA and Europe, approved for clinical usage numerous gene therapy treatments. However, we are still facing a number of significant obstacles including: 1. Efficient delivery systems, 2. Immunological responses, and 3. recently we have learned that many gene therapy approaches are very expensive. The COVID-19 pandemic was a period in which genetic vaccination had proved its efficacy, by which RNA in a synthetic delivery system was very effective. This review will focus on three fast developing technologies in gene therapy: 1. CAR-T cells, 2. CRISPR-Cas and 3. RNAi.
Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/terapia , Europa (Continente) , Terapia Genética , TecnologíaRESUMEN
Many people living with diabetes also have nonalcoholic fatty liver disease (NAFLD). Interleukin-6 (IL-6) is involved in both diseases, interacting with both membrane-bound (classical) and circulating (trans-signaling) soluble receptors. We investigated whether secretion of IL-6 trans-signaling coreceptors are altered in NAFLD by diabetes and whether this might associate with the severity of fatty liver disease. Secretion patterns were investigated with use of human hepatocyte, stellate, and monocyte cell lines. Associations with liver pathology were investigated in two patient cohorts: 1) biopsy-confirmed steatohepatitis and 2) class 3 obesity. We found that exposure of stellate cells to high glucose and palmitate increased IL-6 and soluble gp130 (sgp130) secretion. In line with this, plasma sgp130 in both patient cohorts positively correlated with HbA1c, and subjects with diabetes had higher circulating levels of IL-6 and trans-signaling coreceptors. Plasma sgp130 strongly correlated with liver stiffness and was significantly increased in subjects with F4 fibrosis stage. Monocyte activation was associated with reduced sIL-6R secretion. These data suggest that hyperglycemia and hyperlipidemia can directly impact IL-6 trans-signaling and that this may be linked to enhanced severity of NAFLD in patients with concomitant diabetes. ARTICLE HIGHLIGHTS: IL-6 and its circulating coreceptor sgp130 are increased in people with fatty liver disease and steatohepatitis. High glucose and lipids stimulated IL-6 and sgp130 secretion from hepatic stellate cells. sgp130 levels correlated with HbA1c, and diabetes concurrent with steatohepatitis further increased circulating levels of all IL-6 trans-signaling mediators. Circulating sgp130 positively correlated with liver stiffness and hepatic fibrosis. Metabolic stress to liver associated with fatty liver disease might shift the balance of IL-6 classical versus trans-signaling, promoting liver fibrosis that is accelerated by diabetes.
Asunto(s)
Diabetes Mellitus , Enfermedad del Hígado Graso no Alcohólico , Humanos , Receptor gp130 de Citocinas/metabolismo , Receptores de Interleucina-6/metabolismo , Interleucina-6/metabolismo , Hemoglobina Glucada , Fibrosis , GlucosaRESUMEN
Image-guided radiofrequency ablation (RFA) is used to treat focal tumors in the liver and other organs. Despite potential advantages over surgery, hepatic RFA can promote local and distant tumor growth by activating pro-tumorigenic growth factor and cytokines. Thus, strategies to identify and suppress pro-oncogenic effects of RFA are urgently required to further improve the therapeutic effect. Here, the proliferative effect of plasma of Hepatocellular carcinoma or colorectal carcinoma patients 90 min post-RFA was tested on HCC cell lines, demonstrating significant cellular proliferation compared to baseline plasma. Multiplex ELISA screening demonstrated increased plasma pro-tumorigenic growth factors and cytokines including the FGF protein family which uniquely and selectively activated HepG2. Primary mouse and immortalized human hepatocytes were then subjected to moderate hyperthermia in-vitro, mimicking thermal stress induced during ablation in the peri-ablational normal tissue. Resultant culture medium induced proliferation of multiple cancer cell lines. Subsequent non-biased protein array revealed that these hepatocytes subjected to moderate hyperthermia also excrete a similar wide spectrum of growth factors. Recombinant FGF-2 activated multiple cell lines. FGFR inhibitor significantly reduced liver tumor load post-RFA in MDR2-KO inflammation-induced HCC mouse model. Thus, Liver RFA can induce tumorigenesis via the FGF signaling pathway, and its inhibition suppresses HCC development.
Asunto(s)
Carcinoma Hepatocelular , Ablación por Catéter , Hipertermia Inducida , Neoplasias Hepáticas , Ablación por Radiofrecuencia , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Factores de Crecimiento de Fibroblastos , Ablación por Radiofrecuencia/efectos adversos , Carcinogénesis , CitocinasRESUMEN
BACKGROUND AND AIMS: Prognostic biomarkers identifying patients with early tumor progression after local ablative therapy remain an unmet clinical need. The aim of this study was to investigate circulating miR-21 and miR-210 levels as prognostic biomarkers of HCC treated by CT-guided high-dose rate brachytherapy (HDR-BT). MATERIALS AND METHODS: 24 consecutive HCC patients (BCLC A and B) treated with CT-guided HDR-BT (1 × 15 Gy) were included in this prospective IRB-approved study. RT-PCR was performed to quantify miR-21 and miR-210 levels in blood samples acquired prior to and 2 d after HDR-BT. Follow-up imaging (contrast-enhanced liver MRI and whole-body CT) was performed in 3 months follow-up intervals. Therapy response was assessed with patients classified as either responders or non-responders (12 each). Responders were defined as having no local or diffuse systemic progression within 6 months and no diffuse systemic progression exceeding 3 nodules/nodule diameter > 3 cm from 6 months to 2 years. Non-responders had recurrence within 6 months and/or tumor progression with > 3 nodules or individual lesion diameter > 3 cm or extrahepatic disease within two years, respectively. Biostatistics included parametric and non-parametric testing (Mann-Whitney-U-test), as well as Kaplan-Meier curve construction. RESULTS: The responder group demonstrated significantly decreasing miR-21 values 2 d post therapy compared to non-responders (median miR-21 2-ΔΔCÑ: responders 0.73 [IQR 0.34], non-responders 1.53 [IQR 1.48]; p = 0.0102). miR-210 did not show any significant difference between responders and non-responders (median miR-210 2-ΔΔCÑ: responders 0.74 [IQR 0.45], non-responders 0.99 [IQR 1.13]; p = 0.8399). Kaplan-Meier curves demonstrated significantly shorter time to systemic progression for increased miR-21 (p = 0.0095) but not miR-210 (p = 0.7412), with events accumulating > 1 year post therapy in non-responders (median time to systemic progression 397 days). CONCLUSION: Increasing circulating miR-21 levels are associated with poor response and shorter time to systemic progression in HDR-BT-treated HCC. This proof-of-concept study provides a basis for further investigation of miR-21 as a prognostic biomarker and potential stratifier in future clinical trials of interventional oncology therapies. TRIAL REGISTRATION: In this monocentric clinical study, we analyzed prospectively acquired data of 24 patients from the "ESTIMATE" patient cohort (Studiennummer: DRKS00010587, Deutsches Register Klinischer Studien). Ethical approval was provided by the ethics committee "Ethikkommission bei der LMU München" (reference number "17-346") on June 20, 2017 and August 26, 2020.
Asunto(s)
Braquiterapia , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Biomarcadores , Braquiterapia/métodos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , MicroARNs/genética , Pronóstico , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodosRESUMEN
PURPOSE: To investigate the role of microRNA-21 (miR21) in radiofrequency (RF) ablation-induced tumor growth and whether miR21 inhibition suppresses tumorigenesis. MATERIAL AND METHODS: Standardized liver RF ablation was applied to 35 C57/BL6 mice. miR21 and target proteins pSTAT3, PDCD4, and PTEN were assayed 3 hours, 24 hours, and 3 days after ablation. Next, 53 Balb/c and 44 C57BL/6 mice received Antago-miR21 or scrambled Antago-nc control, followed by intrasplenic injection of 10,000 CT26 or MC38 colorectal tumor cells, respectively. Hepatic RF ablation or sham ablation was performed 24 hours later. Metastases were quantified and tumor microvascular density (MVD) and cellular proliferation were assessed at 14 or 21 days after the procedures, respectively. RESULTS: RF ablation significantly increased miR21 levels in plasma and hepatic tissue at 3 and 24 hours as well as target proteins at 3 days after ablation (P < .05, all comparisons). RF ablation nearly doubled tumor growth (CT26, 2.0 SD ± 1.0 fold change [fc]; MC38, 1.9 SD ± 0.9 fc) and increased MVD (CT26, 1.9 SD ± 1.0 fc; MC38, 1.5 ± 0.5 fc) and cellular proliferation (CT26, 1.7 SD ± 0.7 fc; MC38, 1.4 SD ± 0.5 fc) compared with sham ablation (P < .05, all comparisons). RF ablation-induced tumor growth was suppressed when Antago-miR21 was administered (CT26, 1.0 SD ± 0.7 fc; MC38, 0.9 SD ± 0.4 fc) (P < .01, both comparisons). Likewise, Antago-miR21 decreased MVD (CT26, 1.0 SD ± 0.3 fc; MC38, 1.0 SD ± 0.2 fc) and cellular proliferation (CT26, 0.9 SD ± 0.3 fc; MC38, 0.8 SD ± 0.3 fc) compared with baseline (P < .05, all comparisons). CONCLUSIONS: RF ablation upregulates protumorigenic miR21, which subsequently influences downstream tumor-promoting protein pathways. This effect can potentially be suppressed by specific inhibition of miR21, rendering this microRNA a pivotal and targetable driver of tumorigenesis after hepatic thermal ablation.
Asunto(s)
Ablación por Catéter , Neoplasias Colorrectales , MicroARNs , Ablación por Radiofrecuencia , Ratones , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ablación por Radiofrecuencia/efectos adversos , MicroARNs/genética , Carcinogénesis , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodosRESUMEN
PURPOSE: To perform radiofrequency (RF) ablation of hepatocellular carcinoma (HCC) and to assess serological and histopathological markers of tumorigenesis in distant untreated tumors to determine whether these were associated with unfavorable outcomes such as early relapse and increased biological aggressiveness. MATERIALS AND METHODS: The study cohort comprised 13 patients from a prospective single-arm study. All patients underwent 2 ablation sessions of multifocal HCC nodules 14 days apart. Core biopsy samples of untreated tumors were acquired at baseline and at the time of the second ablation session. Samples were stained immunohistochemically with Ki-67 (proliferation) and CD34 (microvasculature). Blood plasma was obtained at baseline and 2 days after the initial ablation session and analyzed for hepatocyte growth factor (HGF), vascular endothelial growth factor C, and angiopoietin-2 using an enzyme-linked immunosorbent assay. The clinical follow-up period ranged from 7 to 25 months. Patients were stratified as responders (complete remission or limited and delayed recurrence at >6 months; n = 6) or nonresponders (any recurrence within 6 months or >3 new tumors or any new tumor of >3 cm thereafter; n = 7). RESULTS: In 3 of 7 nonresponders, the Ki-67 index markedly increased in untreated tumors, whereas Ki-67 was stable in all responders. Microvascular density strongly increased in a single nonresponder only. HGF and angiopoietin-2 increased by >30% in 3 of 7 and 4 of 7 nonresponders, respectively, whereas they were stable or decreased in responders. Overall, ≥2 biomarkers were elevated in 6 of 7 (85.7%) nonresponders, whereas 4 of 6 responders demonstrated no increased biomarker and 2 patients demonstrated increase in 1 biomarker only (P = .002). CONCLUSIONS: RF ablation of HCC can produce protumorigenic factors that induce effects in distant untreated tumors. These may potentially function as biomarkers of clinical outcome.
Asunto(s)
Carcinoma Hepatocelular , Ablación por Catéter , Neoplasias Hepáticas , Ablación por Radiofrecuencia , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Carcinoma Hepatocelular/complicaciones , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/complicaciones , Angiopoyetina 2 , Factor C de Crecimiento Endotelial Vascular , Estudios Prospectivos , Antígeno Ki-67 , Ablación por Catéter/efectos adversos , Ablación por Radiofrecuencia/efectos adversos , Resultado del Tratamiento , Recurrencia Local de Neoplasia/cirugíaRESUMEN
During the COVID-19 pandemic, postexposure-vaccine-prophylaxis is not a practice. Following exposure, only patient isolation is imposed. Moreover, no therapeutic prevention approach is applied. We asked whether evidence exists for reduced mortality rate following postexposure-vaccine-prophylaxis. To estimate the effectiveness of postexposure-vaccine-prophylaxis, we obtained data from the Israeli Ministry of Health registry. The study population consisted of Israeli residents aged 12 years and older, identified for the first time as PCR-positive for SARS-CoV-2, between December 20th, 2020 (the beginning of the vaccination campaign) and October 7th, 2021. We compared "recently injected" patients-that proved PCR-positive on the same day or on 1 of the 5 consecutive days after first vaccination (representing an unintended postexposure-vaccine-prophylaxis)s-to unvaccinated control group. Among Israeli residents identified PCR-positive for SARS-CoV-2, 11 687 were found positive on the day they received their first vaccine injection (BNT162b2) or on 1 of the 5 days thereafter. In patients over 65 years, 143 deaths occurred among 1412 recently injected (10.13%) compared to 255 deaths among the 1412 unvaccinated (18.06%), odd ratio (OR) 0.51 (95% confidence interval [CI]: 0.41-0.64; p < 0.001). A significant reduction in the death toll was observed among the 55-64 age group, with 8 deaths occurring among the 1320 recently injected (0.61%) compared to 24 deaths among the 1320 unvaccinated control (1.82%), OR 0.33 (95% CI: 0.13-0.76; p = 0.007). Postexposure-vaccine-prophylaxis is effective against death in COVID-19 infection.
Asunto(s)
COVID-19 , Vacunas , Humanos , Persona de Mediana Edad , COVID-19/prevención & control , SARS-CoV-2 , Vacuna BNT162 , PandemiasRESUMEN
BACKGROUND & AIMS: Primary liver cancers include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA) and combined HCC-CCA tumors (cHCC-CCA). It has been suggested, but not unequivocally proven, that hepatic progenitor cells (HPCs) can contribute to hepatocarcinogenesis. We aimed to determine whether HPCs contribute to HCC, cHCC-CCA or both types of tumors. METHODS: To trace progenitor cells during hepatocarcinogenesis, we generated Mdr2-KO mice that harbor a yellow fluorescent protein (YFP) reporter gene driven by the Foxl1 promoter which is expressed specifically in progenitor cells. These mice (Mdr2-KOFoxl1-CRE;RosaYFP) develop chronic inflammation and HCCs by the age of 14-16 months, followed by cHCC-CCA tumors at the age of 18 months. RESULTS: In this Mdr2-KOFoxl1-CRE;RosaYFP mouse model, liver progenitor cells are the source of cHCC-CCA tumors, but not the source of HCC. Ablating the progenitors, caused reduction of cHCC-CCA tumors but did not affect HCCs. RNA-sequencing revealed enrichment of the IL-6 signaling pathway in cHCC-CCA tumors compared to HCC tumors. Single-cell RNA-sequencing (scRNA-seq) analysis revealed that IL-6 is expressed by immune and parenchymal cells during senescence, and that IL-6 is part of the senescence-associated secretory phenotype. Administration of an anti-IL-6 antibody to Mdr2-KOFoxl1-CRE;RosaYFP mice inhibited the development of cHCC-CCA tumors. Blocking IL-6 trans-signaling led to a decrease in the number and size of cHCC-CCA tumors, indicating their dependence on this pathway. Furthermore, the administration of a senolytic agent inhibited IL-6 and the development of cHCC-CCA tumors. CONCLUSION: Our results demonstrate that cHCC-CCA, but not HCC tumors, originate from HPCs, and that IL-6, which derives in part from cells in senescence, plays an important role in this process via IL-6 trans-signaling. These findings could be applied to develop new therapeutic approaches for cHCC-CCA tumors. LAY SUMMARY: Combined hepatocellular carcinoma-cholangiocarcinoma is the third most prevalent type of primary liver cancer (i.e. a cancer that originates in the liver). Herein, we show that this type of cancer originates in stem cells in the liver and that it depends on inflammatory signaling. Specifically, we identify a cytokine called IL-6 that appears to be important in the development of these tumors. Our results could be used for the development of novel treatments for these aggressive tumors.
Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Células Madre , Transducción de Señal , Carcinogénesis , ARN , Conductos Biliares Intrahepáticos , Factores de Transcripción ForkheadRESUMEN
Radiofrequency ablation (RFA) of intrahepatic tumors induces distant tumor growth through activation of interleukin 6/signal transducer and activator of transcription 3 (STAT3)/hepatocyte growth factor (HGF)/tyrosine-protein kinase Met (c-MET) pathway. Yet, the predominant cellular source still needs to be identified as specific roles of the many types of periablational infiltrating immune cells requires further clarification. Here we report the key role of activated myofibroblasts in RFA-induced tumorigenesis and successful pharmacologic blockade. Murine models simulating RF tumorigenic effects on a macrometastatic tumor and intrahepatic micrometastatic deposits after liver ablation and a macrometastatic tumor after kidney ablation were used. Immune assays of ablated normal parenchyma demonstrated significantly increased numbers of activated myofibroblasts in the periablational rim, as well as increased HGF levels, recruitment other cellular infiltrates; macrophages, dendritic cells and natural killer cells, HGF dependent growth factors; fibroblast growth factor-19 (FGF-19) and receptor of Vascular Endothelial Growth Factor-1 (VEGFR-1), and proliferative indices; Ki-67 and CD34 for microvascular density. Furthermore, macrometastatic models demonstrated accelerated distant tumor growth at 7d post-RFA while micrometastatic models demonstrated increased intrahepatic deposit size and number at 14 and 21 days post-RFA. Multi-day atorvastatin, a selective fibroblast inhibitor, inhibited RFA-induced HGF and downstream growth factors, cellular markers and proliferative indices. Specifically, atorvastatin treatment reduced cellular and proliferative indices to baseline levels in the micrometastatic models, however only partially in macrometastatic models. Furthermore, adjuvant atorvastatin completely inhibited accelerated growth of macrometastasis and negated increased micrometastatic intrahepatic burden. Thus, activated myofibroblasts drive RF-induced tumorigenesis at a cellular level via induction of the HGF/c-MET/STAT3 axis, and can be successfully pharmacologically suppressed.
Asunto(s)
Ablación por Catéter , Ablación por Radiofrecuencia , Animales , Atorvastatina , Carcinogénesis , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Ratones , Miofibroblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Irradiation-induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA-seq analysis of whole skin-derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence-associated IL-6 and IL-1 signaling, together with IL-17 upregulation and CCR6+ -mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation-induced IL-6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts. Loss of cytokine signaling by genetic ablation in IL-6-/- or IL-1R-/- mice, or by molecular blockade, strongly ameliorated IRIAD, as did deficiency of CCL20/CCR6-mediated immune cell migration in CCR6-/- mice. Moreover, IL-6 deficiency strongly reduced IL-17, IL-22, CCL20, and CCR6 upregulation, whereas CCR6 deficiency reciprocally diminished IL-6, IL-17, CCL3, and MHC upregulation, suggesting that proximity-dependent cellular cross talk promotes IRIAD. Therapeutically, topical application of Janus kinase blockers or inhibition of T-cell activation by cyclosporine effectively reduced IRIAD, suggesting the potential of targeted approaches for the treatment of dermal side effects in radiotherapy patients.
Asunto(s)
Radiodermatitis , Receptores CCR6 , Animales , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/genética , Ratones , Receptores CCR6/genética , Receptores CCR6/metabolismo , TranscriptomaRESUMEN
To combat the various DNA lesions and their harmful effects, cells have evolved different strategies, collectively referred as DNA damage response (DDR). The DDR largely relies on intranuclear protein networks, which sense DNA lesions, recruit DNA repair enzymes, and coordinates several aspects of the cellular response, including a temporary cell cycle arrest. In addition, external cues mediated by the surface EGF receptor (EGFR) through downstream signaling pathways contribute to the cellular DNA repair capacity. However, cell cycle progression driven by EGFR activation should be reconciled with cell cycle arrest necessary for effective DNA repair. Here, we show that in damaged cells, the expression of Mig-6 (mitogen-inducible gene 6), a known regulator of EGFR signaling, is reduced resulting in heightened EGFR phosphorylation and downstream signaling. These changes in Mig-6 expression and EGFR signaling do not occur in cells deficient of Mre-11, a component of the MRN complex, playing a central role in double-strand break (DSB) repair or when cells are treated with the MRN inhibitor, mirin. RNAseq and functional analysis reveal that DNA damage induces a shift in cell response to EGFR triggering that potentiates DDR-induced p53 pathway and cell cycle arrest. These data demonstrate that the cellular response to EGFR triggering is skewed by components of the DDR, thus providing a plausible explanation for the paradox of the known role played by a growth factor such as EGFR in the DNA damage repair.
Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , ADN , Reparación del ADN , Receptores ErbB/genéticaRESUMEN
Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.
Asunto(s)
Proteína ADAM17/antagonistas & inhibidores , Células Endoteliales/metabolismo , Necroptosis , Neoplasias/etiología , Neoplasias/patología , Animales , Antineoplásicos/farmacología , Biomarcadores , Biomarcadores de Tumor , Comunicación Celular , Muerte Celular , Susceptibilidad a Enfermedades/inmunología , Humanos , Necroptosis/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Siembra Neoplásica , Neoplasias/metabolismo , Neoplasias/terapia , Proteolisis , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Nodding syndrome (NS) is a catastrophic and enigmatic childhood epilepsy, accompanied by multiple neurological impairments and neuroinflammation. Of all the infectious, environmental and psychological factors associated with NS, the major culprit is Onchocerca Volvulus (Ov)-a parasitic worm transmitted to human by blackflies. NS seems to be an 'Autoimmune Epilepsy' in light of the recent findings of deleterious autoimmune antibodies to Glutamate receptors and to Leiomodin-I in NS patients. Moreover, we recently found immunogenetic fingerprints in HLA peptide-binding grooves associate with protection or susceptibility to NS. Macrophage migration inhibitory factor (MIF) is an immune-regulatory cytokine playing a central role in modulating innate and adaptive immunity. MIF is also involved in various pathologies: infectious, autoimmune and neurodegenerative diseases, epilepsy and others. Herein, two functional polymorphisms in the MIF gene, a -794 CATT5-8 microsatellite repeat and a -173 G/C single-nucleotide polymorphism, were assessed in 49 NS patients and 51 healthy controls from South Sudan. We also measured MIF plasma levels in established NS patients and healthy controls. We discovered that the frequency of the high-expression MIF -173C containing genotype was significantly lower in NS patients compared to healthy controls. Interestingly however, MIF plasma levels were significantly elevated in NS patients than in healthy controls. We further demonstrated that the HLA protective and susceptibility associations are dominant over the MIF association with NS. Our findings suggest that MIF might have a dual role in NS. Genetically controlled high-expression MIF genotype is associated with disease protection. However, elevated MIF in the plasma may contribute to the detrimental autoimmunity, neuroinflammation and epilepsy.
Asunto(s)
Factores Inhibidores de la Migración de Macrófagos/genética , Síndrome del Cabeceo/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Genotipo , Humanos , Factores Inhibidores de la Migración de Macrófagos/sangre , Masculino , Repeticiones de Microsatélite , Síndrome del Cabeceo/sangre , Síndrome del Cabeceo/parasitología , Onchocerca volvulus/fisiología , Polimorfismo de Nucleótido Simple , Adulto JovenRESUMEN
T cells of aged people, and of patients with either cancer or severe infections (including COVID-19), are often exhausted, senescent and dysfunctional, leading to increased susceptibilities, complications and mortality. Neurotransmitters and Neuropeptides bind their receptors in T cells, and induce multiple beneficial T cell functions. Yet, T cells of different people vary in the expression levels of Neurotransmitter and Neuropeptide receptors, and in the magnitude of the corresponding effects. Therefore, we performed an individual-based study on T cells of 3 healthy subjects, and 3 Hepatocellular Carcinoma (HCC) patients. HCC usually develops due to chronic inflammation. The inflamed liver induces reduction and inhibition of CD4+ T cells and Natural Killer (NK) cells. Immune-based therapies for HCC are urgently needed. We tested if selected Neurotransmitters and Neuropeptides decrease the key checkpoint protein PD-1 in human T cells, and increase proliferation and killing of HCC cells. First, we confirmed human T cells express all dopamine receptors (DRs), and glutamate receptors (GluRs): AMPA-GluR3, NMDA-R and mGluR. Second, we discovered that either Dopamine, Glutamate, GnRH-II, Neuropeptide Y and/or CGRP (10nM), as well as DR and GluR agonists, induced the following effects: 1. Decreased significantly both %PD-1+ T cells and PD-1 expression level per cell (up to 60% decrease, within 1 h only); 2. Increased significantly the number of T cells that proliferated in the presence of HCC cells (up to 7 fold increase), 3. Increased significantly T cell killing of HCC cells (up to 2 fold increase). 4. Few non-conventional combinations of Neurotransmitters and Neuropeptides had surprising synergistic beneficial effects. We conclude that Dopamine, Glutamate, GnRH-II, Neuropeptide Y and CGRP, alone or in combinations, can decrease % PD-1+ T cells and PD-1 expression per cell, in T cells of both healthy subjects and HCC patients, and increase their proliferation in response to HCC cells and killing of HCC cells. Yet, testing T cells of many more cancer patients is absolutely needed. Based on these findings and previous ones, we designed a novel "Personalized Adoptive Neuro-Immunotherapy", calling for validation of safety and efficacy in clinical trials.
Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neuropéptidos/farmacología , Neurotransmisores/farmacología , Receptor de Muerte Celular Programada 1/biosíntesis , Receptor de Muerte Celular Programada 1/genética , Linfocitos T/metabolismo , Linfocitos T CD4-Positivos/metabolismo , COVID-19/complicaciones , Carcinoma Hepatocelular/patología , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Humanos , Inmunoterapia , Células Asesinas Naturales/metabolismo , Neoplasias Hepáticas/patología , Receptores de Glutamato/efectos de los fármacos , Receptores de Neuropéptido/metabolismo , Receptores de Neurotransmisores/metabolismoRESUMEN
Hepatocellular carcinoma (HCC) typically develops on a background of chronic hepatitis for which the proinflammatory cytokine IL6 is conventionally considered a crucial driving factor. Paradoxically, IL6 also acts as a hepatoprotective factor in chronic liver injury. Here we used the multidrug-resistant gene 2 knockout (Mdr2-/-) mouse model to elucidate potential roles of IL6 in chronic hepatitis-associated liver cancer. Long-term analysis of three separate IL6/Stat3 signaling-deficient Mdr2-/- strains revealed aggravated liver injury with increased dysplastic nodule formation and significantly accelerated tumorigenesis in all strains. Tumorigenesis in the IL6/Stat3-perturbed models was strongly associated with enhanced macrophage accumulation and hepatosteatosis, phenotypes of nonalcoholic steatohepatitis (NASH), as well as with significant reductions in senescence and the senescence-associated secretory phenotype (SASP) accompanied by increased hepatocyte proliferation. These findings reveal a crucial suppressive role for IL6/Stat3 signaling in chronic hepatitis-associated hepatocarcinogenesis by impeding protumorigenic NASH-associated phenotypes and by reinforcing the antitumorigenic effects of the SASP. SIGNIFICANCE: These findings describe a context-dependent role of IL6 signaling in hepatocarcinogenesis and predict that increased IL6-neutralizing sgp130 levels in some patients with NASH may herald early HCC development.See related commentary by Huynh and Ernst, p. 4671.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , Senescencia Celular , Hígado Graso/etiología , Hígado Graso/metabolismo , Interleucina-6/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Biomarcadores , Transformación Celular Neoplásica/genética , Senescencia Celular/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hígado Graso/patología , Femenino , Inmunohistoquímica , Interleucina-6/genética , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Miembro 4 de la Subfamilia B de Casete de Unión a ATPRESUMEN
The liver is a vital organ with multiple functions and a large regenerative capacity. Tumours of the liver are the second most frequently cause of cancer-related death and develop in chronically inflamed livers. IL-6-type cytokines are mediators of inflammation and almost all members signal via the receptor subunit gp130 and the downstream signalling molecule STAT3. We here summarize current knowledge on how gp130 signalling and STAT3 in tumour cells and cells of the tumour micro-environment drives hepatic tumorigenesis. We furthermore discuss very recent findings describing also anti-tumorigenic roles of gp130/STAT3 and important considerations for therapeutic interventions.
Asunto(s)
Inflamación , Transducción de Señal , Carcinogénesis , Receptor gp130 de Citocinas , Humanos , Hígado , Microambiente TumoralRESUMEN
PURPOSE: While systemic tumor-stimulating effects can occur following ablation of normal liver linked to the IL-6/HGF/VEGF cytokinetic pathway, the potential for tumor cells themselves to produce these unwanted effects is currently unknown. Here, we study whether partially treated tumors induce increased tumor growth post-radiofrequency thermal ablation (RFA). METHODS: Tumor growth was measured in three immunocompetent, syngeneic tumor models following partial RFA of the target tumor (in subcutaneous CT26 and MC38 mouse colorectal adenocarcinoma, N = 14 each); and in a distant untreated tumor following partial RFA of target subcutaneous R3230 rat breast adenocarcinoma (N = 12). Tumor cell proliferation (ki-67) and microvascular density (CD34) was assessed. In R3230 tumors, in vivo mechanism of action was assessed following partial RFA by measuring IL-6, HGF, and VEGF expression (ELISA) and c-Met protein (Western blot). Finally, RFA was performed in R3230 tumors with adjuvant c-Met kinase inhibitor or VEGF receptor inhibitor (at 3 days post-RFA, N = 3/arm, total N = 12). RESULTS: RFA stimulated tumor growth in vivo in residual, incompletely treated surrounding CT26 and MC38 tumor at 3-6 days (p < 0.01). In R3230, RFA increased tumor growth in distant tumor 7 days post treatment compared to controls (p < 0.001). For all models, Ki-67 and CD34 were elevated (p < 0.01, all comparisons). IL-6, HGF, and VEGF were also upregulated post incomplete tumor RFA (p < 0.01). These markers were suppressed to baseline levels with adjuvant c-MET kinase or VEGF receptor inhibition. CONCLUSION: Incomplete RFA of a target tumor can sufficiently stimulate residual tumor cells to induce accelerated growth of distant tumors via the IL-6/c-Met/HGF pathway and VEGF production.
Asunto(s)
Adenocarcinoma , Ablación por Catéter , Hipertermia Inducida , Adenocarcinoma/cirugía , Animales , Carcinogénesis , Proliferación Celular , Ratones , RatasRESUMEN
The H19-derived microRNA-675 (miR-675) has been implicated as both tumor promoter and tumor suppressor and also plays a role in liver inflammation. We found that miR-675 promotes cell death in human hepatocellular carcinoma (HCC) cell lines. We show that Fas-associated protein with death domain (FADD), a mediator of apoptotic cell death signaling, is downregulated by miR-675 and a negative correlation exists between miR-675 and FADD expression in mouse models of HCC (p = 0.014) as well as in human samples (p = 0.017). We demonstrate in a mouse model of liver inflammation that overexpression of miR-675 promotes necroptosis, which can be inhibited by the necroptosis-specific inhibitor Nec-1/Nec-1s. miR-675 induces the level of both p-MLKL (Mixed Lineage Kinase Domain-Like Pseudokinase) and RIP3 (receptor-interacting protein 3), which are key signaling molecules in necroptosis, and enhances MLKL binding to RIP3. miR-675 also inhibits the levels of cleaved caspases 8 and 3, suggesting that miR-675 induces a shift from apoptosis to a necroptotic cellular pathway. In conclusion, downregulation of FADD by miR-675 promotes liver necroptosis in response to inflammatory signals. We propose that this regulation cascade can stimulate and enhance the inflammatory response in the liver, making miR-675 an important regulator in liver inflammation and potentially also in HCC.