Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1868(8): 130647, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38801837

RESUMEN

BACKGROUND: Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown. METHODS: Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV. RESULTS: Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. GENERAL SIGNIFICANCE: This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.


Asunto(s)
Simulación de Dinámica Molecular , Ácidos Siálicos , Sialiltransferasas , Sialiltransferasas/metabolismo , Sialiltransferasas/química , Especificidad por Sustrato , Humanos , Animales , Ácidos Siálicos/metabolismo , Ácidos Siálicos/química , Dominio Catalítico
2.
Sci Rep ; 13(1): 15610, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730806

RESUMEN

The human polysialyltransferases ST8Sia II and ST8Sia IV catalyze the transfer of several Neu5Ac residues onto glycoproteins forming homopolymers with essential roles during different physiological processes. In salmonids, heterogeneous set of sialic acids polymers have been described in ovary and on eggs cell surface and three genes st8sia4, st8sia2-r1 and st8sia2-r2 were identified that could be implicated in these heteropolymers. The three polysialyltransferases from the salmonid Coregonus maraena were cloned, recombinantly expressed in HEK293 cells and the ST8Sia IV was biochemically characterized. The MicroPlate Sialyltransferase Assay and the non-natural donor substrate CMP-SiaNAl were used to demonstrate enzyme activity and optimize polysialylation reactions. Polysialylation was also carried out with natural donor substrates CMP-Neu5Ac, CMP-Neu5Gc and CMP-Kdn in cell-free and cell-based assays and structural analyses of polysialylated products using the anti-polySia monoclonal antibody 735 and endoneuraminidase N and HPLC approaches. Our data highlighted distinct specificities of human and salmonid polysialyltransferases with notable differences in donor substrates use and the capacity of fish enzymes to generate heteropolymers. This study further suggested an evolution of the biological functions of polySia. C. maraena ST8Sia IV of particular interest to modify glycoproteins with a variety of polySia chains.


Asunto(s)
Ácido N-Acetilneuramínico , Salmonidae , Animales , Femenino , Humanos , Células HEK293 , Bioensayo
3.
Front Immunol ; 14: 1147356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457740

RESUMEN

Galectins are a family of carbohydrate-binding proteins found in vertebrates in great abundance and diversity in terms of both structure and ligand-binding properties as well as physiological function. Proteins with clear relationships to vertebrate galectins are already found in primitive Bilateria. The increasing amount of accessible well-annotated bilaterian genomes has allowed us to reveal, through synteny analyses, a new hypothesis about the phylogenetic history of the galectin family in this animal group. Thus, we can trace the genomic localization of the putative ancestral Bilateria galectin back to the scallops as a still very primitive slow-evolving bilaterian lineage. Intriguingly, our analyses show that the primordial galectin of the Deuterostomata most likely exhibited galectin-8-like characteristics. This basal standing galectin is characterized by a tandem-repeat type with two carbohydrate recognition domains as well as by a sialic acid binding property of the N-terminal domain, which is typical for galectin-8. With the help of synteny, the amplification of this potential primordial galectin to the broad galectin cosmos of modern jawed vertebrates can be reconstructed. Therefore, it is possible to distinguish between the paralogs resulting from small-scale duplication and the ohnologues generated by whole-genome duplication. Our findings support a substantially new hypothesis about the origin of the various members of the galectin family in vertebrates. This allows us to reveal new theories on the kinship relationships of the galectins of Gnatostomata. In addition, we focus for the first time on the galectines of the Cyclostomata, which as a sister group of jawed vertebrates providing important insights into the evolutionary history of the entire subphylum. Our studies also highlight a previously neglected member of the galectin family, galectin-related protein 2. This protein appears to be a widespread ohnologue of the original tandem-repeat ancestor within Gnathostomata that has not been the focus of galectin research due to its nonclassical galactose binding sequence motif and the fact that it was lost during mammalian evolution.


Asunto(s)
Galectinas , Vertebrados , Animales , Filogenia , Galectinas/metabolismo , Vertebrados/genética , Comunicación Celular , Carbohidratos , Mamíferos/metabolismo
4.
Biology (Basel) ; 12(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36671698

RESUMEN

Sialylated milk oligosaccharides and glycoconjugates have several positive effects on the mucosal barrier, the gut microbiome, and an effective immune system. For this reason, they are important biomolecules for mammary gland health and optimal development of offspring. In milk, the major sialic acid, N-acetylneuraminic acid (Neu5Ac), can be attached as monosialyl-residues or as polymers. To investigate the sialylation processes during lactation of German Holstein cows, we analyzed udder tissue in addition to milk at different time points of lactation. The analysis of the milk samples revealed that both the levels of Neu5Ac and its polymer, polysialic acid (polySia), rapidly decreased during the first three days of lactation, and a high interindividual variance was observed. In mature milk, however, the sialylation status remains relatively constant. The results indicate that mammary gland epithelial cells are one source for milk polySia, since immunohistochemistry of udder tissue exhibited strong polySia staining in these cells. Furthermore, both polysialyltransferases, ST8SiaII and ST8SiaIV, are expressed. Based on known functions of monosialyl residues and polySia, we discuss the potential impact of these biomolecules and the consequences of the heterogeneous sialylation status of milk in relation to udder health and offspring health.

5.
Cells ; 9(11)2020 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142835

RESUMEN

In vertebrates, the carbohydrate polymer polysialic acid (polySia) is especially well known for its essential role during neuronal development, regulating the migration and proliferation of neural precursor cells, for instance. Nevertheless, sialic acid polymers seem to be regulatory elements in other physiological systems, such as the reproductive tract. Interestingly, trout fish eggs have polySia, but we know little of its cellular distribution and role during oogenesis. Therefore, we localized α2,8-linked N-acetylneuraminic acid polymers in the ovaries of Coregonus maraena by immunohistochemistry and found that prevalent clusters of oogonia showed polySia signals on their surfaces. Remarkably, the genome of this salmonid fish contains two st8sia2 genes and one st8sia4 gene, that is, three polysialyltransferases. The expression analysis revealed that for st8sia2-r2, 60 times more mRNA was present than st8sia2-r1 and st8sia4. To compare polysialylation status regarding various polySiaT configurations, we performed a comparable analysis in Sander lucioperca. The genome of this perciform fish contains only one st8sia2 and no st8sia4 gene. Here, too, clusters of oogonia showed polysialylated cell surfaces, and we detected high mRNA values for st8sia2. These results suggest that in teleosts, polySia is involved in the cellular processes of oogonia during oogenesis.


Asunto(s)
Ovario , Percas/genética , Salmonidae/genética , Ácidos Siálicos/metabolismo , Sialiltransferasas/genética , Animales , Femenino , Técnicas Histológicas , Ácido N-Acetilneuramínico/metabolismo , Oogénesis , Oogonios/metabolismo
6.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947579

RESUMEN

We identified and analyzed α2,8-sialyltransferases sequences among 71 ray-finned fish species to provide the first comprehensive view of the Teleost ST8Sia repertoire. This repertoire expanded over the course of Vertebrate evolution and was primarily shaped by the whole genome events R1 and R2, but not by the Teleost-specific R3. We showed that duplicated st8sia genes like st8sia7, st8sia8, and st8sia9 have disappeared from Tetrapods, whereas their orthologues were maintained in Teleosts. Furthermore, several fish species specific genome duplications account for the presence of multiple poly-α2,8-sialyltransferases in the Salmonidae (ST8Sia II-r1 and ST8Sia II-r2) and in Cyprinus carpio (ST8Sia IV-r1 and ST8Sia IV-r2). Paralogy and synteny analyses provided more relevant and solid information that enabled us to reconstruct the evolutionary history of st8sia genes in fish genomes. Our data also indicated that, while the mammalian ST8Sia family is comprised of six subfamilies forming di-, oligo-, or polymers of α2,8-linked sialic acids, the fish ST8Sia family, amounting to a total of 10 genes in fish, appears to be much more diverse and shows a patchy distribution among fish species. A focus on Salmonidae showed that (i) the two copies of st8sia2 genes have overall contrasted tissue-specific expressions, with noticeable changes when compared with human co-orthologue, and that (ii) st8sia4 is weakly expressed. Multiple sequence alignments enabled us to detect changes in the conserved polysialyltransferase domain (PSTD) of the fish sequences that could account for variable enzymatic activities. These data provide the bases for further functional studies using recombinant enzymes.


Asunto(s)
Sialiltransferasas/genética , Vertebrados/genética , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Biología Computacional/métodos , Evolución Molecular , Peces/genética , Peces/metabolismo , Expresión Génica , Sitios Genéticos , Modelos Moleculares , Familia de Multigenes , Filogenia , Conformación Proteica , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Relación Estructura-Actividad , Vertebrados/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(34): 9498-503, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27444013

RESUMEN

Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...