RESUMEN
Through the actuation of vibronic modes in cell-membrane-associated aminocyanines, using near-infrared light, a distinct type of molecular mechanical action can be exploited to rapidly kill cells by necrosis. Vibronic-driven action (VDA) is distinct from both photodynamic therapy and photothermal therapy as its mechanical effect on the cell membrane is not abrogated by inhibitors of reactive oxygen species and it does not induce thermal killing. Subpicosecond concerted whole-molecule vibrations of VDA-induced mechanical disruption can be achieved using very low concentrations (500 nM) of aminocyanines or low doses of light (12 J cm-2, 80 mW cm-2 for 2.5 min), resulting in complete eradication of human melanoma cells in vitro. Also, 50% tumour-free efficacy in mouse models for melanoma was achieved. The molecules that destroy cell membranes through VDA have been termed molecular jackhammers because they undergo concerted whole-molecule vibrations. Given that a cell is unlikely to develop resistance to such molecular mechanical forces, molecular jackhammers present an alternative modality for inducing cancer cell death.
Asunto(s)
Melanoma , Fotoquimioterapia , Ratones , Animales , Humanos , Melanoma/tratamiento farmacológico , Fotoquimioterapia/métodos , Muerte Celular , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The solid-electrolyte interphase (SEI) critically governs the performance of rechargeable batteries. An ideal SEI is expected to be electrically insulative to prevent persistently parasitic reactions between the electrode and the electrolyte and ionically conductive to facilitate Faradaic reactions of the electrode. However, the true nature of the electrical properties of the SEI remains hitherto unclear due to the lack of a direct characterization method. Here we use in situ bias transmission electron microscopy to directly measure the electrical properties of SEIs formed on copper and lithium substrates. We reveal that SEIs show a voltage-dependent differential conductance. A higher rate of differential conductance induces a thicker SEI with an intricate topographic feature, leading to an inferior Coulombic efficiency and cycling stability in Liâ£â£Cu and Liâ£â£LiNi0.8Mn0.1Co0.1O2 cells. Our work provides insight into the targeted design of the SEI with desired characteristics towards better battery performance.
RESUMEN
We evaluate the fullerene C60 binding effect; through the metal (Al) and through the ligand (Pc,TPP), on the photophysical and charge transport properties of M-porphyrin(TPP)/phthalocyanine(Pc) (M = Al(III), Zn(II)). We perform density functional theory (DFT) and time-dependent DFT calculations for the macrocycle-C60 dyads, showing that all systems studied are thermodynamically favorable. The C60 binding effect on the absorption spectrum is a red-shift of the Q and Soret (B) bands of TPPs and Pcs. The Pc-dyads show longer λ for Q bands (673 nm) than those with TPP (568 nm). AlTPP-C60 and ZnTPP-C60 show a more favorable electron injection to TiO2 than the analogs Pcs, and the regeneration of the dye is preferred in AlTPP-C60 and AlPc-C60. Zero-bias conductance is computed (10-4-10-7 G0) for the dyads using molecular junctions with Au(111)-based electrodes. When a bias voltage of around 0.6 V up to 1 V is applied, an increase in current is obtained for AlTPP-C60 (10-7 A), ZnTPP-C60 (10-7 A), and AlPc-C60 (10-8 A). Although there is not a unique trend in the behavior of the dyads, Pcs have better photophysical properties than TPPs and the latter are better in the charge transport. We conclude that AlTPP(ZnTPP)-C60 dyads are an excellent alternative for designing new materials for dye-sensitized solar cells or optoelectronic devices.
RESUMEN
Present Li-ion battery (LIB) technology requires strong improvements in performance, energy capacity, charging-time, and cost to expand their application to e-mobility and grid storage. Li-metal is one of the most promising materials to replace commercial anodes such as graphite because of its 10 times higher specific capacity. However, Li-metal has high reactivity with commercial liquid electrolytes; thus, new solid materials are proposed to replace liquid electrolytes when Li-metal anodes are used. We present a theoretical analysis of the charging process in a full nanobattery, containing a LiCoO2 cathode, a Li7P2S8I solid-state electrolyte (SSE), a Li-metal anode as well as Al and Cu collectors for the cathode and anode, respectively. In addition, we added a Li3P/Li2S film as a solid electrolyte interphase (SEI) layer between the Li-anode and SSE. Thus, we focus this study on the SEI and SSE. We simulated the charging of the nanobattery with an external voltage by applying an electric field. We estimated temperature profiles within the nanobattery and analyzed Li-ion transport through the SSE and SEI. We observed a slight temperature rise at the SEI due to reactions forming PS3- and P2S74- fragments at the interfaces; however, this temperature profile changes due to the charging current under the presence of the external electric field ε = 0.75 V Å-1. Without the external field, the calculated open-circuit voltage (OCV) was 3.86 V for the battery, which is within the range of values of commercial cobalt-based LIBs. This voltage implies a spontaneous fall of available Li-ions from the anode to the cathode (during discharge). The charge of this nanobattery requires overcoming the OCV plus an additional voltage that determines the charging current. Thus, we applied an external potential able to neutralize the OCV, plus an additional 1.6 V to induce the transport of Li+ from the cathode up to the anode. Several interesting details about Li+ transport paths through the SSE and SEI are discussed.
RESUMEN
An ab initio molecular dynamics study of an electrochemical interface between a solid-state-electrolyte Li0.29La0.57TiO3 and Li-metal is performed to analyze interphase formation and evolution when external electric fields of 0, 0.5, 1.0 and 2.0 V Å-1 are applied. From this electrochemical stability analysis, it was concluded that lithium-oxide (Li2O) and lanthanum-oxide (La2O3) phases were formed at the electrolyte/anode interphase. As the electric field increased, oxygen from the electrolyte diffused through the Li-metal anode, increasing the amount of O from deeper crystallographic planes of the electrolyte that reacted with Li and La. A strong reduction of Ti was expected from their Bader charge variation from +3.5 in the bulk to +2.5 at the interface. Due to the loss of Li atoms from the anode to form Li-oxide at the interphase, vacancies were created on the Li-metal, causing anode structure amorphization near the Li-oxide phase and keeping the rest of the anode structure as BCC. Therefore, the interface was unstable because of the continuous Li-oxide and La-oxide formation and growth, which were more pronounced when increasing the external electric field.
RESUMEN
Rechargeable lithium-ion batteries are the most popular devices for energy storage but still a lot of research needs to be done to improve their cycling and storage capacity. Silicon has been proposed as an anode material because of its large theoretical capacity of â¼3600 mAh/g. Therefore, focus is needed on the lithiation process of silicon anodes where it is known that the anode increases its volume more than 300%, producing cracking and other damages. We performed molecular dynamics atomistic simulations to study the swelling, alloying, and amorphization of a silicon nanocrystal anode in a full nanobattery model during the first charging cycle. A dissolved salt of lithium hexafluorophosphate in ethylene carbonate was chosen as the electrolyte solution and lithium cobalt oxide as cathode. External electric fields are applied to emulate the charging, causing the migration of the Li-ions from the cathode to the anode, by drifting through the electrolyte solution, thus converting pristine Si gradually into Li14Si5 when fully lithiated. When the electric field is applied to the nanobattery, the temperature never exceeds 360 K due to a temperature control imposed resembling a cooling mechanism. The volume of the anode increases with the amorphization of the silicon as the external field is applied by creating a layer of LiSi alloy between the electrolyte and the silicon nanocrystal and then, at the arrival of more Li-ions changing to an alloy, where the drift velocity of Li-ions is greater than the velocity in the initial nanocrystal structure. Charge neutrality is maintained by concerted complementary reduction-oxidation reactions at the anode and cathode, respectively. In addition, the nanobattery model developed here can be used to study charge mobility, current density, conductance and resistivity, among several other properties of several candidate materials for rechargeable batteries and constitutes the initial point for further studies on the formation of the solid electrolyte interphase in the anode. Graphical Abstract Nanobattery: LiCoO2 cathode, electrolyte solution of 1M Li+PF6- in ethylene carbonate, and Si crystal anode, which changes its volume due to lithiation during the first charge.