Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Open Forum Infect Dis ; 8(2): ofaa610, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33575418

RESUMEN

BACKGROUND: Due to unprecedented shortages in N95 filtering facepiece respirators, healthcare systems have explored N95 reprocessing. No single, full-scale reprocessing publication has reported an evaluation including multiple viruses, bacteria, and fungi along with respirator filtration and fit. METHODS: We explored reprocessing methods using new 3M 1860 N95 respirators, including moist (50%-75% relative humidity [RH]) heat (80-82°C for 30 minutes), ethylene oxide (EtO), pulsed xenon UV-C (UV-PX), hydrogen peroxide gas plasma (HPGP), and hydrogen peroxide vapor (HPV). Respirator samples were analyzed using 4 viruses (MS2, phi6, influenza A virus [IAV], murine hepatitis virus [MHV)]), 3 bacteria (Escherichia coli, Staphylococcus aureus, Geobacillus stearothermophilus spores, and vegetative bacteria), and Aspergillus niger. Different application media were tested. Decontaminated respirators were evaluated for filtration integrity and fit. RESULTS: Heat with moderate RH most effectively inactivated virus, resulting in reductions of >6.6-log10 MS2, >6.7-log10 Phi6, >2.7-log10 MHV, and >3.9-log10 IAV and prokaryotes, except for G stearothermohphilus. Hydrogen peroxide vapor was moderately effective at inactivating tested viruses, resulting in 1.5- to >4-log10 observable inactivation. Staphylococcus aureus inactivation by HPV was limited. Filtration efficiency and proper fit were maintained after 5 cycles of heat with moderate RH and HPV. Although it was effective at decontamination, HPGP resulted in decreased filtration efficiency, and EtO treatment raised toxicity concerns. Observed virus inactivation varied depending upon the application media used. CONCLUSIONS: Both moist heat and HPV are scalable N95 reprocessing options because they achieve high levels of biological indicator inactivation while maintaining respirator fit and integrity.

2.
Int J Pharm ; 330(1-2): 61-72, 2007 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-17034967

RESUMEN

The USP drug release standard for delayed-release articles method A was evaluated using planar laser-induced fluorescence (PLIF). Prior authors have suggested that high pH "hot spots" could develop during the buffer medium addition of the method A enteric test. Additionally, previous studies have shown heterogeneous flow patterns and low-shear regions in the USP Apparatus II dissolution vessel, which may result in poor mixing of the buffer and acid media during the pH neutralization step of the method A enteric test. In this study, PLIF was used to evaluate the mixing patterns and evolution of pH neutralization during the buffer medium addition with rhodamine-B dye and the pH-sensitive dye fluorescein, respectively. Additionally, a comparison of the methods A and B enteric tests was performed with enteric-coated tablets containing rhodamine-B in the film so as to image the dissolution rate of the coating polymer with PLIF in order to determine if rapid buffer addition for the method A procedure accelerates the rate of film coat dissolution. Rapid addition of the 250 mL of buffer medium over 5 s to the 750 mL of acidic medium shows efficient mixing and pH neutralization due to the generation of large-scale stirring and enhanced turbulence resulting from the descending buffer medium. Slow addition near the paddle shaft over 5 min showed segregation in the recirculating region around the paddle shaft. In contrast, slow addition near the vessel wall introduces the medium into fluid outside of the recirculation region and enables transport over the entire vessel. Enteric-coated tablets tested according to method A with rapid medium addition and method B enteric tests performed identically, indicating no difference in polymer dissolution rate between the two tests. From the results of the PLIF imaging studies with rhodamine-B, fluorescein, and enteric-coated tablets, it was seen that "hot spots" affecting the dissolution performance of enteric dosage forms are not generated during the neutralization step of the method A enteric test namely when the media is added rapidly or outside of the recirculating region that surrounds the paddle shaft.


Asunto(s)
Metacrilatos/química , Polímeros/química , Comprimidos Recubiertos/química , Tecnología Farmacéutica/métodos , Preparaciones de Acción Retardada , Fluorescencia , Rayos Láser , Rodaminas/química , Solubilidad , Tecnología Farmacéutica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...