Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410791, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949226

RESUMEN

Aurothiomalate (AuTM) is an FDA-approved antiarthritic gold drug with unique anticancer properties. To enhance its anticancer activity, we prepared a bioconjugate with human apoferritin (HuHf) by attaching some AuTM moieties to surface protein residues. The reaction of apoferritin with excess AuTM yielded a single adduct, that was characterized by ESI MS and ICP-OES analysis, using three mutant ferritins and trypsinization experiments. The adduct contains ~3 gold atoms per ferritin subunit, arranged in a small cluster bound to Cys90 and Cys102. MD simulations provide a plausible structural model for the cluster. The adduct was evaluated for its pharmacological properties and was found to be significantly more cytotoxic than free AuTM against A2780 cancer cells mainly due to higher gold uptake. NMR-metabolomics showed that AuTM bound to HuHf and free AuTM induced qualitatively similar changes in treated cancer cells, indicating that the effects on cell metabolism are approximately the same, in agreement with independent biochemical experiments. In conclusion, we have demonstrated here that a molecularly precise bioconjugate formed between AuTM and HuHf exhibits anticancer properties far superior to the free drug, while retaining its key mechanistic features. Evidence is provided that human ferritin can serve as an excellent carrier for this metallodrug.

3.
Antioxidants (Basel) ; 13(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38790662

RESUMEN

Biological aging, characterized by changes in metabolism and physicochemical properties of cells, has an impact on public health. Environment and lifestyle, including factors like diet and physical activity, seem to play a key role in healthy aging. Several studies have shown that regular physical activity can enhance antioxidant defense mechanisms, including the activity of enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase. However, intense or prolonged exercise can also lead to an increase in reactive oxygen species (ROS) production temporarily, resulting in oxidative stress. This phenomenon is referred to as "exercise-induced oxidative stress". The relationship between physical activity and oxidative stress in aging is complex and depends on various factors such as the type, intensity, duration, and frequency of exercise, as well as individual differences in antioxidant capacity and adaptation to exercise. In this review, we analyzed what is reported by several authors regarding the role of physical activity on oxidative stress in the aging process as well as the role of hormesis and physical exercise as tools for the prevention and treatment of sarcopenia, an aging-related disease. Finally, we reported what has recently been studied in relation to the effect of physical activity and sport on aging in women.

4.
Am J Pathol ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705382

RESUMEN

Melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. Available treatments have improved survival, although long-term benefits still are unsatisfactory. The mitogen-activated protein kinase extracellular signal-regulated kinase 5 (ERK5) promotes melanoma growth, and ERK5 inhibition determines cellular senescence and the senescence-associated secretory phenotype. Here, latent-transforming growth factor ß-binding protein 1 (LTBP1) mRNA was found to be up-regulated in A375 and SK-Mel-5 BRAFV600E melanoma cells after ERK5 inhibition. In keeping with a key role of LTBP1 in regulating transforming growth factor ß (TGF-ß), TGF-ß1 protein levels were increased in lysates and conditioned media of ERK5-knockdown (KD) cells, and were reduced upon LTBP1 KD. Both LTBP1 and TGF-ß1 proteins were increased in melanoma xenografts in mice treated with the ERK5 inhibitor XMD8-92. Moreover, treatment with conditioned media from ERK5-KD melanoma cells reduced cell proliferation and invasiveness, and TGF-ß1-neutralizing antibodies impaired these effects. In silico data sets revealed that higher expression levels of both LTBP1 and TGFB1 mRNA are associated with better overall survival of melanoma patients, and that increased LTBP1 or TGF-ß1 expression proved a beneficial role in patients treated with anti-PD1 immunotherapy, making a possible immunosuppressive role of LTBP1/TGF-ß1 unlikely upon ERK5 inhibition. This study, therefore, identifies additional desirable effects of ERK5 targeting, providing evidence of an ERK5-dependent tumor-suppressive role of TGF-ß in melanoma.

5.
Heliyon ; 10(2): e24719, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312589

RESUMEN

We investigated the effect of growing on lactate instead of glucose in human cardiomyocyte assessing their viability, cell cycle activity, oxidative stress and metabolism by a proteomic and metabolomic approach. In previous studies performed on elite players, we found that adaptation to exercise is characterized by a chronic high plasma level of lactate. Lactate is considered not only an energy source but also a signalling molecule and is referred as "lactormone"; heart is one of the major recipients of exogenous lactate. With this in mind, we used a cardiac cell line AC16 to characterize the lactate metabolic profile and investigate the metabolic flexibility of the heart. Interestingly, our data indicated that cardiomyocytes grown on lactate (72 h) show change in several proteins and metabolites linked to cell hypertrophy and cytoskeleton remodelling. The obtained results could help to understand the effect of this metabolite on heart of high-performance athletes.

6.
J Inorg Biochem ; 251: 112452, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38070433

RESUMEN

Three gold(I) linear compounds, sharing the general formula [AuI(LPh3)], have been synthesized and characterized. The nature of the ligand has been modified by moving down among some of the elements of group 15, i.e. phosphorus, arsenic and antimony. The structures of derived compounds have been solved through XRD and the reactivity behaviour towards selected biomolecules has been investigated through a multi-technique approach involving NMR, high-resolution mass spectrometry and IR. Moreover, the biological activity of the investigated compounds has been comparatively analyzed through classical methodologies and the disclosed differences are discussed in detail.


Asunto(s)
Antineoplásicos , Auranofina , Auranofina/química , Antimonio/farmacología , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química
7.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003534

RESUMEN

Cachexia is a devastating pathology that worsens the quality of life and antineoplastic treatment outcomes of oncologic patients. Herein, we report that the secretome from murine colon carcinoma CT26 induces cachectic features in both murine and human adipocytes that are associated with metabolic alterations such as enhanced lactate production and decreased oxygen consumption. The use of oxamate, which inhibits lactate dehydrogenase activity, hinders the effects induced by CT26 secretome. Interestingly, the CT26 secretome elicits an increased level of lactate dehydrogenase and decreased expression of adiponectin. These modifications are driven by the STAT3 signalling cascade since the inhibition of STAT3 with WP1066 impedes the formation of the cachectic condition and the alteration of lactate dehydrogenase and adiponectin levels. Collectively, these findings show that STAT3 is responsible for the altered lactate dehydrogenase and adiponectin levels that, in turn, could participate in the worsening of this pathology and highlight a step forward in the comprehension of the mechanisms underlying the onset of the cachectic condition in adipocytes.


Asunto(s)
Adiponectina , Caquexia , Humanos , Ratones , Animales , Adiponectina/metabolismo , Caquexia/metabolismo , Regulación hacia Abajo , Calidad de Vida , Regulación hacia Arriba , Adipocitos/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Factor de Transcripción STAT3/metabolismo
8.
RSC Adv ; 13(31): 21629-21632, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37476042

RESUMEN

NMR metabolomics is a powerful tool to characterise the changes in cancer cell metabolism elicited by anticancer drugs. Here, the large metabolic alterations produced by two cytotoxic gold carbene compounds in A2780 ovarian cancer cells are described and discussed in comparison to auranofin, in the frame of the available mechanistic knowledge.

9.
Biometals ; 36(5): 961-968, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36869967

RESUMEN

Auranofin ([1-(thio-κS)-ß-D-glucopyranose-2,3,4,6-tetraacetato](triethylphosphine)-gold) is a leading gold-based drug clinically used to treat arthritis. In the last years, it entered various drug reprofiling programs, and it has been found promising against various forms of tumor, including ovarian cancer. Evidence showed as its antiproliferative profile mainly depends on the inhibition of thioredoxin reductase (TrxR), being this mitochondrial system its main target. In this context, we report here the synthesis and biological evaluation of a novel complex designed as auranofin analogue obtained through the conjugation of a phenylindolylglyoxylamide ligand (which belongs to the so-called PIGA TSPO ligand family) with the auranofin-derived cationic fragment [Au(PEt3)]+. This complex is characterized by two parts. The phenylindolylglyoxylamide moiety, owing to its high affinity for TSPO (in the low nM range) should drive the compound to target mitochondria, whereas the [Au(PEt3)]+ cation is the actual anticancer-active molecular fragment. Overall, we wanted to offer the proof-of-concept that by coupling PIGA ligands to anticancer gold active moieties, it is possible to preserve and even improve anticancer effects, opening the avenue to a reliable approach for targeted therapy.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Auranofina , Farmacóforo , Ligandos , Antineoplásicos/química , Oro/farmacología , Oro/química , Reductasa de Tiorredoxina-Disulfuro , Neoplasias Ováricas/tratamiento farmacológico , Línea Celular Tumoral , Receptores de GABA
10.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770719

RESUMEN

A panel of four novel gold(I) complexes, inspired by the clinically established gold drug auranofin (1-Thio-ß-D-glucopyranosatotriethylphosphine gold-2,3,4,6-tetraacetate), was prepared and characterized. All these compounds feature the replacement of the triethylphosphine ligand of the parent compound auranofin with a trimethylphosphite ligand. The linear coordination around the gold(I) center is completed by Cl-, Br-, I- or by the thioglucose tetraacetate ligand (SAtg). The in-solution behavior of these gold compounds as well as their interactions with some representative model proteins were comparatively analyzed through 31PNMR and ESI-MS measurements. Notably, all panel compounds turned out to be stable in aqueous media, but significant differences with respect to auranofin were disclosed in their interactions with a few leading proteins. In addition, the cytotoxic effects produced by the panel compounds toward A2780, A2780R and SKOV-3 ovarian cancer cells were quantitated and found to be in the low micromolar range, since the IC50 of all compounds was found to be between 1 µM and 10 µM. Notably, these novel gold complexes showed large and similar inhibition capabilities towards the key enzyme thioredoxin reductase, again comparable to those of auranofin. The implications of these results for the discovery of new and effective gold-based anticancer agents are discussed.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Fosfitos , Humanos , Femenino , Auranofina/farmacología , Auranofina/química , Oro/química , Línea Celular Tumoral , Ligandos , Antineoplásicos/farmacología , Antineoplásicos/química
11.
Healthcare (Basel) ; 11(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36673609

RESUMEN

The aim of this study was to characterize the salivary proteome and metabolome of highly trained female and male young basketball players, highlighting common and different traits. A total of 20 male and female basketball players (10 female and 10 male) and 20 sedentary control subjects (10 female and 10 male) were included in the study. The athletes exercised at least five times per week for 2 h per day. Saliva samples were collected mid-season, between 9:00 and 11:00 a.m. and away from sport competition. The proteome and metabolome were analyzed by using 2DE and GC-MS techniques, respectively. A computerized 2DE gel image analysis revealed 43 spots that varied in intensity among groups. Between these spots, 10 (23.2%) were differentially expressed among male athletes and controls, 22 (51.2%) between female basketball players and controls, 11 spots (25.6%) between male and female athletes, and 13 spots (30.2%) between male and female controls. Among the proteins identified were Immunoglobulin, Alpha-Amylase, and Dermcidin, which are inflammation-related proteins. In addition, several amino acids, such as glutamic acid, lysine, ornithine, glycine, tyrosine, threonine, and valine, were increased in trained athletes. In this study, we highlight that saliva is a useful biofluid to assess athlete performance and confirm that the adaptation of men and women to exercise has some common features, but also some different sex-specific behaviors, including differential amino acid utilization and expression of inflammation-related proteins, which need to be further investigated. Moreover, in the future, it will be interesting to examine the influence of sport-type on these differences.

12.
Sci Rep ; 12(1): 18526, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323868

RESUMEN

In elite athlete several metabolic changes occur during regular training. These modifications are associated with changes in blood metabolic profile and can lead to adaptive mechanisms aimed at establish a new dynamic equilibrium, which guarantees better performance. The goal of this study was to characterize the plasma metabolic profile and redox homeostasis, in athletes practicing two different team sports such as soccer and basketball in order to identify potential metabolic pathways underlying the differences in training programs. A cohort of 30 male, 20 professional players (10 soccer and 10 basketballs) and 10 sedentary males as control were enrolled in the study. Plasma redox balance, metabolites and adiponectin were determined. The results show low levels of oxidative species (25.5%), with both high antioxidant capacity (17.6%) and adiponectin level (64.4%) in plasma from basketball players, in comparison to soccer players. Metabolic analysis indicates in basketball players a significant high plasma level of amino acids Valine and Ornithine both involved in redox homeostasis and anti-inflammatory metabolism.


Asunto(s)
Baloncesto , Fútbol , Humanos , Masculino , Adiponectina , Atletas , Estrés Oxidativo
13.
Biomedicines ; 10(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36289835

RESUMEN

Metal-based complexes contribute a vital part to the available arsenal of cytotoxic agents today [...].

14.
FASEB J ; 36(11): e22598, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36305891

RESUMEN

Cachexia is a systemic disease associated with several pathologies, including cancer, that leads to excessive weight loss due to enhanced protein degradation. Previously, we showed that cachectic features in myotubes are provoked by a metabolic shift toward lactic fermentation. Our previous results led us to hyphotesise that increasing pyruvate concentration could impede the metabolic modifications responsible for induction of cachexia in myotubes. Here, we demonstrated that the addition of sodium pyruvate in conditioned media from CT26 colon cancer cells (CM CT26) prevents the onset of either phenotypic and metabolic cachectic features. Myotubes treated with CM CT26 containing sodium pyruvate show a phenotype similar to the healthy counterpart and display lactate production, oxygen consumption, and pyruvate dehydrogenase activity as control myotubes. The use of the Mitochondrial Pyruvate Carrier inhibitor UK5099, highlights the importance of mitochondrial pyruvate amount in the prevention of cachexia. Indeed, UK5099-treated myotubes show cachectic features as those observed in myotubes treated with CM CT26. Finally, we found that sodium pyruvate is able to decrease STAT3 phosphorylation level, a signaling pathway involved in the induction of cachexia in myotubes. Collectively, our results show that cachexia in myotubes could be prevented by the utilization of sodium pyruvate which impedes the metabolic modifications responsible for the acquisition of the cachectic features.


Asunto(s)
Caquexia , Ácido Pirúvico , Humanos , Caquexia/metabolismo , Ácido Pirúvico/farmacología , Ácido Pirúvico/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transducción de Señal , Sodio/metabolismo , Músculo Esquelético/metabolismo , Factor de Transcripción STAT3/metabolismo
15.
Cancer Chemother Pharmacol ; 89(6): 809-823, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35543764

RESUMEN

PURPOSE: Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC)2PF6, i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. METHODS: A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidation-sensitive protein cysteines. RESULTS: Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC)2PF6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. CONCLUSIONS: In this study, we deepened the mode of action of Au(NHC) and Au(NHC)2PF6, identifying common cellular targets but confirming their different influence on the mitochondrial function.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias Ováricas , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Femenino , Oro/química , Compuestos de Oro , Humanos , Metano/análogos & derivados , Neoplasias Ováricas/tratamiento farmacológico , Oxidación-Reducción , Proteómica
16.
Redox Biol ; 52: 102294, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35358852

RESUMEN

The effects of Auranofin (AF) on protein expression and protein oxidation in A2780 cancer cells were investigated through a strategy based on simultaneous expression proteomics and redox proteomics determinations. Bioinformatics analysis of the proteomics data supports the view that the most critical cellular changes elicited by AF treatment consist of thioredoxin reductase inhibition, alteration of the cell redox state, impairment of the mitochondrial functions, metabolic changes associated with conversion to a glycolytic phenotype, induction of ER stress. The occurrence of the above cellular changes was extensively validated by performing direct biochemical assays. Our data are consistent with the concept that AF produces its effects through a multitarget mechanism that mainly affects the redox metabolism and the mitochondrial functions and results into severe ER stress. Results are discussed in the context of the current mechanistic knowledge existing on AF.


Asunto(s)
Auranofina , Neoplasias Ováricas , Auranofina/farmacología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Oxidación-Reducción , Proteoma/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo
17.
Cells ; 11(4)2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35203362

RESUMEN

BACKGROUND: Adiponectin (Adn), released by adipocytes and other cell types such as skeletal muscle, has insulin-sensitizing and anti-inflammatory properties. Sphingosine 1-phosphate (S1P) is reported to act as effector of diverse biological actions of Adn in different tissues. S1P is a bioactive sphingolipid synthesized by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK) 1 and 2. Consolidated findings support the key role of S1P in the biology of skeletal muscle. METHODS AND RESULTS: Here we provide experimental evidence that S1P signalling is modulated by globular Adn treatment being able to increase the phosphorylation of SK1/2 as well as the mRNA expression levels of S1P4 in C2C12 myotubes. These findings were confirmed by LC-MS/MS that showed an increase of S1P levels after Adn treatment. Notably, the involvement of S1P axis in Adn action was highlighted since, when SK1 and 2 were inhibited by PF543 and ABC294640 inhibitors, respectively, not only the electrophysiological changes but also the increase of oxygen consumption and of aminoacid levels induced by the hormone, were significantly inhibited. CONCLUSION: Altogether, these findings show that S1P biosynthesis is necessary for the electrophysiological properties and oxidative metabolism of Adn in skeletal muscle cells.


Asunto(s)
Adiponectina , Lisofosfolípidos , Fibras Musculares Esqueléticas , Esfingosina , Adiponectina/metabolismo , Animales , Línea Celular , Cromatografía Liquida , Lisofosfolípidos/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Estrés Oxidativo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometría de Masas en Tándem
18.
Med Res Rev ; 42(3): 1111-1146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34850406

RESUMEN

Auranofin is an oral gold(I) compound, initially developed for the treatment of rheumatoid arthritis. Currently, Auranofin is under investigation for oncological application within a drug repurposing plan due to the relevant antineoplastic activity observed both in vitro and in vivo tumor models. In this review, we analysed studies in which Auranofin was used as a single drug or in combination with other molecules to enhance their anticancer activity or to overcome chemoresistance. The analysis of different targets/pathways affected by this drug in different cancer types has allowed us to highlight several interesting targets and effects of Auranofin besides the already well-known inhibition of thioredoxin reductase. Among these targets, inhibitory-κB kinase, deubiquitinates, protein kinase C iota have been frequently suggested. To rationalize the effects of Auranofin by a system biology-like approach, we exploited transcriptomic data obtained from a wide range of cell models, extrapolating the data deposited in the Connectivity Maps website and we attempted to provide a general conclusion and discussed the major points that need further investigation.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Auranofina/farmacología , Auranofina/uso terapéutico , Resistencia a Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Reductasa de Tiorredoxina-Disulfuro
19.
iScience ; 24(9): 103077, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34568797

RESUMEN

Development of biological tissues in vitro is not a trivial task and requires the correct maturation of the selected cell line. To this aim, many attempts were done mainly by mimicking the biological environment using micro/nanopatterned or stimulated scaffolds. However, the obtainment of functional tissues in vitro is still far from being achieved. In contrast with the standard methods, we here present an easy approach for the maturation of myotubes toward the reproduction of muscular tissue. By using liquid crystalline networks with different stiffness and molecular alignment, we demonstrate how the material itself can give favorable interactions with myoblasts helping a correct differentiation. Electrophysiological studies demonstrate that myotubes obtained on these polymers have more adult-like morphology and better functional features with respect to those cultured on standard supports. The study opens to a platform for the differentiation of other cell lines in a simple and scalable way.

20.
Biomedicines ; 9(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440075

RESUMEN

Au2phen ((2,9-dimethyl-1,10-phenanthroline)2Au2(µ-O)2)(PF6)2 and Auoxo6 ((6,6'-dimethyl-2,2'-bipyridine)2Au2(µ-O)2)(PF6)2 are two structurally related gold(III) complexes that were previously reported to display relevant and promising anticancer properties in vitro toward a large number of human cancer cell lines. To expand the knowledge on the molecular mechanisms through which these gold(III) complexes trigger apoptosis in cancer cells, further studies have been performed using A2780 ovarian cancer cells as reference models. For comparative purposes, parallel studies were carried out on the gold(III) complex AuL12 (dibromo(ethylsarcosinedithiocarbamate)gold(III)), whose proapoptotic profile had been earlier characterized in several cancer cell lines. Our results pointed out that all these gold(III) compounds manifest a significant degree of similarity in their cellular and proapoptotic effects; the main observed perturbations consist of potent thioredoxin reductase inhibition, disruption of the cell redox balance, impairment of the mitochondrial membrane potential, and induction of associated metabolic changes. In addition, evidence was gained of the remarkable contribution of ASK1 (apoptosis-signal-regulating kinase-1) and AKT pathways to gold(III)-induced apoptotic signaling. Overall, the observed effects may be traced back to gold(III) reduction and subsequent formation and release of gold(I) species that are able to bind and inhibit several enzymes responsible for the intracellular redox homeostasis, in particular the selenoenzyme thioredoxin reductase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...