Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063067

RESUMEN

Microtubule (MT)-dependent transport is a critical means of intracellular movement of cellular cargo by kinesin and dynein motors. MT-dependent transport is tightly regulated by cellular MT-associated proteins (MAPs) that directly bind to MTs and either promote or impede motor protein function. Viruses have been widely shown to usurp MT-dependent transport to facilitate their virion movement to sites of replication and/or for exit from the cell. However, it is unclear if viruses also negatively regulate MT-dependent transport. Using single-molecule motility and cellular transport assays, we show that the vaccinia virus (VV)-encoded MAP, A51R, inhibits kinesin-1-dependent transport along MTs in vitro and in cells. This inhibition is selective as the function of kinesin-3 is largely unaffected by VV A51R. Interestingly, we show that A51R promotes the perinuclear accumulation of cellular cargo transported by kinesin-1 such as lysosomes and mitochondria during infection. Moreover, A51R also regulates the release of specialized VV virions that exit the cell using kinesin-1-dependent movement. Using a fluorescently tagged rigor mutant of kinesin-1, we show that these motors accumulate on A51R-stabilized MTs, suggesting these stabilized MTs may form a "kinesin-1 sink" to regulate MT-dependent transport in the cell. Collectively, our findings uncover a new mechanism by which viruses regulate host cytoskeletal processes.


Asunto(s)
Cinesinas , Microtúbulos , Virus Vaccinia , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Humanos , Virus Vaccinia/metabolismo , Virus Vaccinia/fisiología , Virus Vaccinia/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Transporte Biológico , Células HeLa
2.
PLoS Pathog ; 20(5): e1012010, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38753575

RESUMEN

Arboviruses are a diverse group of insect-transmitted pathogens that pose global public health challenges. Identifying evolutionarily conserved host factors that combat arbovirus replication in disparate eukaryotic hosts is important as they may tip the balance between productive and abortive viral replication, and thus determine virus host range. Here, we exploit naturally abortive arbovirus infections that we identified in lepidopteran cells and use bacterial effector proteins to uncover host factors restricting arbovirus replication. Bacterial effectors are proteins secreted by pathogenic bacteria into eukaryotic hosts cells that can inhibit antimicrobial defenses. Since bacteria and viruses can encounter common host defenses, we hypothesized that some bacterial effectors may inhibit host factors that restrict arbovirus replication in lepidopteran cells. Thus, we used bacterial effectors as molecular tools to identify host factors that restrict four distinct arboviruses in lepidopteran cells. By screening 210 effectors encoded by seven different bacterial pathogens, we identify several effectors that individually rescue the replication of all four arboviruses. We show that these effectors encode diverse enzymatic activities that are required to break arbovirus restriction. We further characterize Shigella flexneri-encoded IpaH4 as an E3 ubiquitin ligase that directly ubiquitinates two evolutionarily conserved proteins, SHOC2 and PSMC1, promoting their degradation in insect and human cells. We show that depletion of either SHOC2 or PSMC1 in insect or human cells promotes arbovirus replication, indicating that these are ancient virus restriction factors conserved across invertebrate and vertebrate hosts. Collectively, our study reveals a novel pathogen-guided approach to identify conserved antimicrobial machinery, new effector functions, and conserved roles for SHOC2 and PSMC1 in virus restriction.


Asunto(s)
Proteínas Bacterianas , Interacciones Huésped-Patógeno , Replicación Viral , Animales , Replicación Viral/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Arbovirus , Shigella flexneri/patogenicidad , Infecciones por Arbovirus/virología , Línea Celular
3.
Annu Rev Virol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38631917

RESUMEN

Even if a virus successfully binds to a cell, defects in any of the downstream steps of the viral life cycle can preclude the production of infectious virus particles. Such abortive infections are likely common in nature and can provide fundamental insights into the cell and host tropism of viral pathogens. Research over the past 60 years has revealed an incredible diversity of abortive infections by DNA and RNA viruses in various animal cell types. Here we discuss the general causes of abortive infections and provide specific examples from the literature to illustrate the range of abortive infections that have been reported. We also discuss how abortive infections can have critical roles in shaping host immune responses and in the development of virus-induced cancers. Finally, we describe how abortive infections can be applied to basic and clinical research, underscoring the importance of understanding these fascinating aspects of virus biology.

4.
Nat Microbiol ; 9(4): 988-1006, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538832

RESUMEN

The human facilitates chromatin transcription (FACT) complex is a chromatin remodeller composed of human suppressor of Ty 16 homologue (hSpt16) and structure-specific recognition protein-1 subunits that regulates cellular gene expression. Whether FACT regulates host responses to infection remained unclear. We identify a FACT-mediated, interferon-independent, antiviral pathway that restricts poxvirus replication. Cell culture and bioinformatics approaches suggest that early viral gene expression triggers nuclear accumulation of SUMOylated hSpt16 subunits required for the expression of E26 transformation-specific sequence-1 (ETS-1)-a transcription factor that activates virus restriction programs. However, biochemical studies show that poxvirus-encoded A51R proteins block ETS-1 expression by outcompeting structure-specific recognition protein-1 binding to SUMOylated hSpt16 and by tethering SUMOylated hSpt16 to microtubules. Furthermore, A51R antagonism of FACT enhances poxvirus replication in human cells and virulence in mice. Finally, we show that FACT also restricts rhabdoviruses, flaviviruses and orthomyxoviruses, suggesting broad roles for FACT in antiviral immunity. Our study reveals the FACT-ETS-1 antiviral response (FEAR) pathway to be critical for eukaryotic antiviral immunity and describes a unique mechanism of viral immune evasion.


Asunto(s)
Evasión Inmune , Interferones , Humanos , Animales , Ratones , Cromatina
5.
Cell Rep ; 43(3): 113882, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38457341

RESUMEN

Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.


Asunto(s)
Poxviridae , Replicación Viral , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Poxviridae/genética , Virus Vaccinia/fisiología , Proteínas Virales/metabolismo , Microtúbulos/metabolismo , Antivirales/metabolismo
6.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352400

RESUMEN

Arboviruses are a diverse group of insect-transmitted pathogens that pose global public health challenges. Identifying evolutionarily conserved host factors that combat arbovirus replication in disparate eukaryotic hosts is important as they may tip the balance between productive and abortive viral replication, and thus determine virus host range. Here, we exploit naturally abortive arbovirus infections that we identified in lepidopteran cells and use bacterial effector proteins to uncover host factors restricting arbovirus replication. Bacterial effectors are proteins secreted by pathogenic bacteria into eukaryotic hosts cells that can inhibit antimicrobial defenses. Since bacteria and viruses can encounter common host defenses, we hypothesized that some bacterial effectors may inhibit host factors that restrict arbovirus replication in lepidopteran cells. Thus, we used bacterial effectors as molecular tools to identify host factors that restrict four distinct arboviruses in lepidopteran cells. By screening 210 effectors encoded by seven different bacterial pathogens, we identify six effectors that individually rescue the replication of all four arboviruses. We show that these effectors encode diverse enzymatic activities that are required to break arbovirus restriction. We further characterize Shigella flexneri-encoded IpaH4 as an E3 ubiquitin ligase that directly ubiquitinates two evolutionarily conserved proteins, SHOC2 and PSMC1, promoting their degradation in insect and human cells. We show that depletion of either SHOC2 or PSMC1 in insect or human cells promotes arbovirus replication, indicating that these are ancient virus restriction factors conserved across invertebrate and vertebrate hosts. Collectively, our study reveals a novel pathogen-guided approach to identify conserved antimicrobial machinery, new effector functions, and conserved roles for SHOC2 and PSMC1 in virus restriction.

7.
bioRxiv ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798356

RESUMEN

The FACT complex is an ancient chromatin remodeling factor comprised of Spt16 and SSRP1 subunits that regulates specific eukaryotic gene expression programs. However, whether FACT regulates host immune responses to infection was unclear. Here, we identify an antiviral pathway mediated by FACT, distinct from the interferon response, that restricts poxvirus replication. We show that early viral gene expression triggers nuclear accumulation of specialized, SUMOylated Spt16 subunits of FACT required for expression of ETS-1, a downstream transcription factor that activates a virus restriction program. However, poxvirus-encoded A51R proteins block ETS-1 expression by outcompeting SSRP1 for binding to SUMOylated Spt16 in the cytosol and by tethering SUMOylated Spt16 to microtubules. Moreover, we show that A51R antagonism of FACT enhances both poxvirus replication in human cells and viral virulence in mice. Finally, we demonstrate that FACT also restricts unrelated RNA viruses, suggesting a broad role for FACT in antiviral immunity. Our study reveals the F ACT- E TS-1 A ntiviral R esponse (FEAR) pathway to be critical for eukaryotic antiviral immunity and describes a unique mechanism of viral immune evasion.

8.
Pathogens ; 11(9)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36145493

RESUMEN

The Nuclear Factor-kappa B (NF-κB) family of transcription factors regulates key host inflammatory and antiviral gene expression programs, and thus, is often activated during viral infection through the action of pattern-recognition receptors and cytokine-receptor interactions. In turn, many viral pathogens encode strategies to manipulate and/or inhibit NF-κB signaling. This is particularly exemplified by vaccinia virus (VV), the prototypic poxvirus, which encodes at least 18 different inhibitors of NF-κB signaling. While many of these poxviral NF-κB inhibitors are not required for VV replication in cell culture, they virtually all modulate VV virulence in animal models, underscoring the important influence of poxvirus-NF-κB pathway interactions on viral pathogenesis. Here, we review the diversity of mechanisms through which VV-encoded antagonists inhibit initial NF-κB pathway activation and NF-κB signaling intermediates, as well as the activation and function of NF-κB transcription factor complexes.

9.
Viruses ; 14(7)2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35891564

RESUMEN

The eukaryotic cytoskeleton comprises a network of actin, microtubules, and intermediate filaments that not only provide mechanical support to maintain cell morphology but also serve many other critical roles in cell motility, division, and intracellular transport of cargo such as vesicles and organelles [...].


Asunto(s)
Citoesqueleto , Virus , Actinas , Filamentos Intermedios , Microtúbulos
10.
Viruses ; 14(5)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35632720

RESUMEN

Diverse DNA and RNA viruses utilize cytoskeletal networks to efficiently enter, replicate, and exit the host cell, while evading host immune responses. It is well established that the microtubule (MT) network is commonly hijacked by viruses to traffic to sites of replication after entry and to promote egress from the cell. However, mounting evidence suggests that the MT network is also a key regulator of host immune responses to infection. At the same time, viruses have acquired mechanisms to manipulate and/or usurp MT networks to evade these immune responses. Central to most interactions of viruses with the MT network are virally encoded microtubule-associated proteins (MAPs) that bind to MTs directly or indirectly. These MAPs associate with MTs and other viral or cellular MAPs to regulate various aspects of the MT network, including MT dynamics, MT-dependent transport via motor proteins such as kinesins and dyneins, and MT-dependent regulation of innate immune responses. In this review, we examine how viral MAP interactions with the MT network facilitate viral replication and immune evasion.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Virus , Dineínas/metabolismo , Cinesinas , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Replicación Viral , Virus/metabolismo
11.
Viruses ; 11(5)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31052481

RESUMEN

The host immune response and virus-encoded immune evasion proteins pose constant, mutual selective pressure on each other. Virally encoded immune evasion proteins also indicate which host pathways must be inhibited to allow for viral replication. Here, we show that IIV-6 is capable of inhibiting the two Drosophila NF-κB signaling pathways, Imd and Toll. Antimicrobial peptide (AMP) gene induction downstream of either pathway is suppressed when cells infected with IIV-6 are also stimulated with Toll or Imd ligands. We find that cleavage of both Imd and Relish, as well as Relish nuclear translocation, three key points in Imd signal transduction, occur in IIV-6 infected cells, indicating that the mechanism of viral inhibition is farther downstream, at the level of Relish promoter binding or transcriptional activation. Additionally, flies co-infected with both IIV-6 and the Gram-negative bacterium, Erwinia carotovora carotovora, succumb to infection more rapidly than flies singly infected with either the virus or the bacterium. These findings demonstrate how pre-existing infections can have a dramatic and negative effect on secondary infections, and establish a Drosophila model to study confection susceptibility.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Drosophila melanogaster/virología , Iridovirus/fisiología , Receptores Toll-Like/inmunología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Interacciones Huésped-Patógeno , Inmunidad Innata , Iridovirus/genética , Receptores Toll-Like/genética , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Replicación Viral
12.
Proc Natl Acad Sci U S A ; 116(5): 1669-1678, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30642971

RESUMEN

Since its accidental introduction to Massachusetts in the late 1800s, the European gypsy moth (EGM; Lymantria dispar dispar) has become a major defoliator in North American forests. However, in part because females are flightless, the spread of the EGM across the United States and Canada has been relatively slow over the past 150 years. In contrast, females of the Asian gypsy moth (AGM; Lymantria dispar asiatica) subspecies have fully developed wings and can fly, thereby posing a serious economic threat if populations are established in North America. To explore the genetic determinants of these phenotypic differences, we sequenced and annotated a draft genome of L. dispar and used it to identify genetic variation between EGM and AGM populations. The 865-Mb gypsy moth genome is the largest Lepidoptera genome sequenced to date and encodes ∼13,300 proteins. Gene ontology analyses of EGM and AGM samples revealed divergence between these populations in genes enriched for several gene ontology categories related to muscle adaptation, chemosensory communication, detoxification of food plant foliage, and immunity. These genetic differences likely contribute to variations in flight ability, chemical sensing, and pathogen interactions among EGM and AGM populations. Finally, we use our new genomic and transcriptomic tools to provide insights into genome-wide gene-expression changes of the gypsy moth after viral infection. Characterizing the immunological response of gypsy moths to virus infection may aid in the improvement of virus-based bioinsecticides currently used to control larval populations.


Asunto(s)
Interacciones Microbiota-Huesped/genética , Mariposas Nocturnas/genética , Mariposas Nocturnas/virología , Animales , Canadá , Línea Celular , Femenino , Variación Genética/genética , Larva/genética , Larva/virología , Massachusetts , Análisis de Secuencia de ADN/métodos
13.
J Vis Exp ; (139)2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30272671

RESUMEN

RNA interference- and genome editing-based screening platforms have been widely used to identify host cell factors that restrict virus replication. However, these screens are typically conducted in cells that are naturally permissive to the viral pathogen under study. Therefore, the robust replication of viruses in control conditions may limit the dynamic range of these screens. Furthermore, these screens may be unable to easily identify cellular defense pathways that restrict virus replication if the virus is well-adapted to the host and capable of countering antiviral defenses. In this article, we describe a new paradigm for exploring virus-host interactions through the use of screens that center on naturally abortive infections by arboviruses such as vesicular stomatitis virus (VSV). Despite the ability of VSV to replicate in a wide range of dipteran insect and mammalian hosts, VSV undergoes a post-entry, abortive infection in a variety of cell lines derived from lepidopteran insects, such as the gypsy moth (Lymantria dispar). However, these abortive VSV infections can be "rescued" when host cell antiviral defenses are compromised. We describe how VSV strains encoding convenient reporter genes and restrictive L. dispar cell lines can be paired to set-up screens to identify host factors involved in arbovirus restriction. Furthermore, we also show the utility of these screening tools in the identification of virally encoded factors that rescue VSV replication during coinfection or through ectopic expression, including those encoded by mammalian viruses. The natural restriction of VSV replication in L. dispar cells provides a high signal-to-noise ratio when screening for the conditions that promote VSV rescue, thus enabling the use of simplistic luminescence- and fluorescence-based assays to monitor the changes in VSV replication. These methodologies are valuable for understanding the interplay between host antiviral responses and viral immune evasion factors.


Asunto(s)
Antivirales/uso terapéutico , Infecciones por Arbovirus/fisiopatología , Factores Inmunológicos/uso terapéutico , Replicación Viral/inmunología , Animales , Antivirales/farmacología , Factores Inmunológicos/farmacología , Tamizaje Masivo
14.
Bio Protoc ; 7(22)2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29276724

RESUMEN

Over the past 15 years, the free-living nematode, Caenorhabditis elegans has become an important model system for exploring eukaryotic innate immunity to bacterial and fungal pathogens. More recently, infection models using either natural or non-natural nematode viruses have also been established in C. elegans. These models offer new opportunities to use the nematode to understand eukaryotic antiviral defense mechanisms. Here we report protocols for the infection of C. elegans with a non-natural viral pathogen, vesicular stomatitis virus (VSV) through microinjection. We also describe how recombinant VSV strains encoding fluorescent or luciferase reporter genes can be used in conjunction with simple fluorescence-, survival-, and luminescence-based assays to identify host genetic backgrounds with differential susceptibilities to virus infection.

15.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931683

RESUMEN

Since 1999, Caenorhabditis elegans has been extensively used to study microbe-host interactions due to its simple culture, genetic tractability, and susceptibility to numerous bacterial and fungal pathogens. In contrast, virus studies have been hampered by a lack of convenient virus infection models in nematodes. The recent discovery of a natural viral pathogen of C. elegans and development of diverse artificial infection models are providing new opportunities to explore virus-host interplay in this powerful model organism.


Asunto(s)
Caenorhabditis elegans , Interacciones Huésped-Patógeno , Modelos Animales , Virus ARN/fisiología , Virosis/virología , Animales , Caenorhabditis elegans/inmunología , Caenorhabditis elegans/virología , Inmunidad Innata , Nodaviridae/fisiología , Interferencia de ARN , Virus ARN/inmunología , Vesiculovirus/fisiología , Virosis/inmunología
16.
Curr Biol ; 27(6): 795-806, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28262484

RESUMEN

The recent discovery of the positive-sense single-stranded RNA (ssRNA) Orsay virus (OV) as a natural pathogen of the nematode Caenorhabditis elegans has stimulated interest in exploring virus-nematode interactions. However, OV infection is restricted to a small number of intestinal cells, even in nematodes defective in their antiviral RNA interference (RNAi) response, and is neither lethal nor vertically transmitted. Using a fluorescent reporter strain of the negative-sense ssRNA vesicular stomatitis virus (VSV), we show that microinjection of VSV particles leads to a dose-dependent, muscle tissue-tropic, lethal infection in C. elegans. Furthermore, we find nematodes deficient for components of the antiviral RNAi pathway, such as Dicer-related helicase 1 (DRH-1), to display hypersusceptibility to VSV infection as evidenced by elevated infection rates, virus replication in multiple tissue types, and earlier mortality. Strikingly, infection of oocytes and embryos could also be observed in drh-1 mutants. Our results suggest that the antiviral RNAi response not only inhibits vertical VSV transmission but also promotes transgenerational inheritance of antiviral immunity. Our study introduces a new, in vivo virus-host model system for exploring arbovirus pathogenesis and provides the first evidence for vertical pathogen transmission in C. elegans.


Asunto(s)
Infecciones por Arbovirus/transmisión , Transmisión Vertical de Enfermedad Infecciosa , Interferencia de ARN , Infecciones por Rhabdoviridae/transmisión , Vesiculovirus/fisiología , Animales , Infecciones por Arbovirus/virología , Caenorhabditis elegans , Microinyecciones , Infecciones por Rhabdoviridae/virología
17.
RNA ; 21(12): 2067-75, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26428694

RESUMEN

Influenza A virus (IAV) lacks the enzyme for adding 5' caps to its RNAs and snatches the 5' ends of host capped RNAs to prime transcription. Neither the preference of the host RNA sequences snatched nor the effect of cap-snatching on host processes is completely defined. Previous studies of influenza cap-snatching used poly(A)-selected RNAs from infected cells or relied on annotated host genes to define the snatched host RNAs, and thus lack details on many noncoding host RNAs including snRNAs, snoRNAs, and promoter-associated capped small (cs)RNAs, which are made by "paused" Pol II during transcription initiation. In this study, we used a nonbiased technique, CapSeq, to identify host and viral-capped RNAs including nonpolyadenylated RNAs in the same samples, and investigated the substrate-product correlation between the host RNAs and the viral RNAs. We demonstrated that noncoding host RNAs, particularly U1 and U2, are the preferred cap-snatching source over mRNAs or pre-mRNAs. We also found that csRNAs are highly snatched by IAV. Because the functions of csRNAs remain mostly unknown, especially in somatic cells, our finding reveals that csRNAs at least play roles in the process of IAV infection. Our findings support a model where nascent RNAs including csRNAs are the preferred targets for cap-snatching by IAV and raise questions about how IAV might use snatching preferences to modulate host-mRNA splicing and transcription.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Caperuzas de ARN/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Regulación Viral de la Expresión Génica , Genes Virales , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo
18.
Curr Opin Insect Sci ; 8: 111-120, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26034705

RESUMEN

Small interfering RNA (siRNA)-mediated RNA interference (RNAi) pathways are critical for the detection and inhibition of RNA virus replication in insects. Recent work has also implicated RNAi pathways in the establishment of persistent virus infections and in the control of DNA virus replication. Accumulating evidence suggests that diverse double-stranded RNAs produced by RNA and DNA viruses can trigger RNAi responses yet many viruses have evolved mechanisms to inhibit RNAi defenses. Therefore, an evolutionary arms race exists between host RNAi pathways and invading viral pathogens. Here we review recent advances in our knowledge of how insect RNAi pathways are elicited upon infection, the strategies used by viruses to counter these defenses, and discuss recent evidence implicating Piwi-interacting RNAs in antiviral defense.

19.
Elife ; 32014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24966209

RESUMEN

Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-κB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems.


Asunto(s)
Lepidópteros/virología , Virus Vaccinia/fisiología , Vesiculovirus/fisiología , Proteínas Virales/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , ADN Viral/química , Humanos , Lepidópteros/inmunología , Ratones , Microscopía Confocal , Microscopía Fluorescente , Complejo de la Endopetidasa Proteasomal/química , Interferencia de ARN , Ubiquitina/química , Replicación Viral
20.
PLoS One ; 6(9): e24643, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931792

RESUMEN

BACKGROUND: Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an improved strategy that allows for the creation of marker-free recombinant poxviruses of any species. The Selectable and Excisable Marker (SEM) system incorporates a unique fusion marker gene for the efficient selection of poxvirus recombinants and the Cre/loxP system to facilitate the subsequent removal of the marker. We have defined and characterized this new methodological tool by insertion of a foreign gene into vaccinia virus, with the subsequent removal of the selectable marker. We then analyzed the importance of loxP orientation during Cre recombination, and show that the SEM system can be used to introduce site-specific deletions or inversions into the viral genome. Finally, we demonstrate that the SEM strategy is amenable to other poxviruses, as demonstrated here with the creation of an ectromelia virus recombinant lacking the EVM002 gene. CONCLUSION/SIGNIFICANCE: The system described here thus provides a faster, simpler and more efficient means to create clinic-ready recombinant poxviruses for therapeutic gene therapy applications.


Asunto(s)
Marcadores Genéticos/genética , Poxviridae/genética , Recombinación Genética/genética , Animales , Bovinos , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Vectores Genéticos/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...