Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 378: 114814, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762094

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.


Asunto(s)
Astrocitos , Isquemia Encefálica , Daño por Reperfusión , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Humanos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología
2.
Sci Rep ; 14(1): 12377, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811632

RESUMEN

Sacubitril/valsartan has been highly recognized as a treatment for Chronic heart failure (CHF). Its potential cardioprotective benefits and mechanisms, however, remain to be explored. Metabolomics can be used to identify the metabolic characteristics and related markers, as well as the influence of drugs, thereby opening up the new mechanism for sacubitril/valsartan therapy in CHF disease. In this study, the ligation of left anterior descending and exhaustive swimming were used to induce a rat model of CHF after myocardial infarction. The efficacy was appraised with echocardiography, serum NT-proBNP, and histopathologica. UPLC-Q/TOF-MS combined with multivariate statistical analysis approach were used to analyze the effect of sacubitril/valsartan on CHF rats. RT-qPCR and western blot were performed to investigate the tryptophan/kynurenine metabolism pathway. Accordingly, the basal cardiac function were increased, while the serum NT-proBNP and collagen volume fraction decreased in CHF rats with sacubitril/valsartan. Sacubitril/valsartan regulated the expression of kynurenine et.al 8 metabolomic biomarkers in CHF rats serum, and it contributed to the cardioprotective effects through tryptophan metabolism pathway. In addition, the mRNA and protein expression of the indoleamine 2,3-dioxygenase (IDO) in the myocardial tissue of CHF rats, were down-regulated by sacubitril/valsartan, which was the same with the IL-1ß, IFN-γ, TNF-α, COX-2, and IL-6 mRNA expression, and IL-1ß, IFN-γ, and TNF-α expression in serum. In conclusion, sacubitril/valsartan can ameliorate cardiac function and ventricular remodeling in CHF rats, at least in part through inhibition of tryptophan/kynurenine metabolism.


Asunto(s)
Aminobutiratos , Compuestos de Bifenilo , Combinación de Medicamentos , Insuficiencia Cardíaca , Inflamación , Quinurenina , Tetrazoles , Triptófano , Valsartán , Remodelación Ventricular , Animales , Aminobutiratos/farmacología , Valsartán/farmacología , Compuestos de Bifenilo/farmacología , Remodelación Ventricular/efectos de los fármacos , Quinurenina/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Ratas , Triptófano/metabolismo , Masculino , Tetrazoles/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Modelos Animales de Enfermedad , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Encefálico/sangre , Ratas Sprague-Dawley
3.
Anatol J Cardiol ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372344

RESUMEN

Myocardial ischemia/reperfusion injury (MIRI) is a pathophysiological process connected to the onset of numerous heart disorders. The pathogenesis of MIRI is complex, and it mainly involves calcium overload, classic oxidative stress, mitochondrial disorder, inflammation, microvascular disorder, and cell death. The clinical treatment options for MIRI are presently constrained, making it imperative to develop new treatment modalities. Recent studies have demonstrated that ferroptosis is the main cause of MIRI. Ferroptosis is a new type of regulated iron-dependent cell death whose mechanism and targeted therapy are anticipated to be novel therapeutic techniques for MIRI. Herein, the primary mechanism underlying ferroptosis (the 3 major metabolic routes involving iron, amino acids, and lipids, and in MIRI, the specific mechanism and therapeutic target of ferroptosis) are discussed to determine the potential therapeutic approach for MIRI.

4.
Biofactors ; 50(1): 74-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37458329

RESUMEN

Endothelial pyroptosis promotes cerebral ischemia/reperfusion injury (CIRI). Sodium Danshensu (SDSS) has been shown to attenuate CIRI and have anti-inflammatory properties in endothelial cells. However, the mechanism and effect of SDSS on alleviating endothelial pyroptosis after CIRI remains poorly understood. Thus, we aimed to investigate the efficacy and mechanism of SDSS in reducing endothelial pyroptosis. It has been shown that SDSS administration inhibited NLRP3 inflammasome-mediated pyroptosis. As demonstrated by protein microarrays, molecular docking, CETSA and ITDRFCETSA , SDSS bound strongly to CLIC4. Furthermore, SDSS can decrease its expression and inhibit its translocation. Its effectiveness was lowered by CLIC4 overexpression but not by knockdown. Overall The beneficial effect of SDSS against CIRI in this study can be ascribed to blocking endothelial pyroptosis by binding to CLIC4 and then inhibiting chloride efflux-dependent NLRP3 inflammasome activation.


Asunto(s)
Isquemia Encefálica , Lactatos , Daño por Reperfusión , Humanos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Células Endoteliales/metabolismo , Simulación del Acoplamiento Molecular , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/genética , Canales de Cloruro/genética , Canales de Cloruro/farmacología
5.
Int J Biol Macromol ; 254(Pt 3): 128008, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951068

RESUMEN

In order to improve the removal rate of uranium and reduce the harm of radioactive pollution, a physically crosslinked polyvinyl alcohol/phosphorylated chitosan (PPP) hydrogel electrode was designed by freezing thawing method. The results show that PPP hydrogel has a good adsorption effect on uranium, and 200 mL of uranium tailings leachate is absorbed, and the treatment efficiency reaches 100 % within 15 min. PPP hydrogel can adapt to a wide range of pH conditions and exhibit excellent adsorption efficiency in the range of 3-9. At the same time, PPP hydrogel maintains an adsorption efficiency of over 85 % for 950 mg/L uranium solution. This lays the foundation for the practical application of PPP hydrogel. In addition, PPP hydrogel also exhibits good repeatability, after 7 cycles, the material still retains 95 % of its initial performance. The synergistic effect of various functional groups such as phosphate, hydroxyl, and ammonium in the material is the main mechanism of PPP's adsorption capacity for uranium. Furthermore, electrochemical adsorption method significantly enhances the adsorption performance of PPP hydrogel.


Asunto(s)
Quitosano , Uranio , Ácido Fítico , Alcohol Polivinílico , Concentración de Iones de Hidrógeno , Hidrogeles , Adsorción
6.
Mediators Inflamm ; 2023: 7807302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954637

RESUMEN

Background: Alleviating mild cognitive impairment (MCI) is crucial to delay the progression of Alzheimer's disease (AD). Jia-Wei-Kai-Xin-San (JWKXS) is applied for treating AD with MCI. However, the mechanism of JWKXS in the treatment of MCI is unclear. Thus, this study aimed to investigate the effect and mechanism of JWKXS in SAMP8 mice models of MCI. Methods: MCI models were established to examine learning and memory ability and explore the pathomechanisms in brain of SAMP8 mice at 4, 6, and 8 months. The mice were treated for 8 weeks and the effects of JWKXS on MCI were characterized through Morris water maze and HE/Nissl's/immunohistochemical staining. Its mechanism was predicted by the combination of UPLC-Q-TOF/MS and system pharmacology analysis, further verified with SAMP8 mice, BV2 microglial cells, and PC12 cells. Results: It was found that 4-month-old SAMP8 mice exhibited MCI. Two months of JWKXS treatment improved the learning and memory ability, alleviated the hippocampal tissue and neuron damage. Through network pharmacology, four key signaling pathways were found to be involved in treatment of MCI by JWKXS, including TLR4/NF-κB pathway, NLRP3 inflammasome activation, and intrinsic and extrinsic apoptosis. In vitro and in vivo experiments demonstrated that JWKXS attenuated neuroinflammation by inhibiting microglia activation, suppressing TLR4/NF-κB and NLRP3 inflammasome pathways, and blocking the extrinsic and intrinsic apoptotic pathways leading to neuronal apoptosis suppression in the hippocampus. Conclusion: JWKXS treatment improved the learning and memory ability and conferred neuroprotective effects against MCI by inducing anti-inflammation and antiapoptosis. Limitations. The small sample size and short duration of the intervention limit in-depth investigation of the mechanisms. Future Prospects. This provides a direction for further clarification of the anti-AD mechanism, and provides certain data support for the formulation to move toward clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratas , Ratones , Animales , Inflamasomas/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios/uso terapéutico
7.
Int J Mol Med ; 52(5)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37800614

RESUMEN

The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF­κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti­inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Enfermedades Neuroinflamatorias , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Preparaciones Farmacéuticas
8.
Food Sci Nutr ; 11(9): 4926-4947, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701204

RESUMEN

Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.

9.
Biomed Pharmacother ; 167: 115475, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722190

RESUMEN

The vascular endothelium is vital in maintaining cardiovascular health by regulating vascular permeability and tone, preventing thrombosis, and controlling vascular inflammation. However, when oxidative stress triggers endothelial dysfunction, it can lead to chronic cardiovascular diseases (CVDs). This happens due to oxidative stress-induced mitochondrial dysfunction, inflammatory responses, and reduced levels of nitric oxide. These factors cause damage to endothelial cells, leading to the acceleration of CVD progression. Melatonin, a natural antioxidant, has been shown to inhibit oxidative stress and stabilize endothelial function, providing cardiovascular protection. The clinical application of melatonin in the prevention and treatment of CVDs has received widespread attention. In this review, based on bibliometric studies, we first discussed the relationship between oxidative stress-induced endothelial dysfunction and CVDs, then summarized the role of melatonin in the treatment of atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and other CVDs. Finally, the potential clinical use of melatonin in the treatment of these diseases is discussed.

10.
Biomed Pharmacother ; 165: 115153, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37437377

RESUMEN

BACKGROUND: The primary cause of acute cardiovascular events with high mortality is the rupture of atherosclerotic plaque followed by thrombosis. Sodium Danshensu (SDSS) has shown potential in inhibiting the inflammatory response in macrophages and preventing early plaque formation in atherosclerotic mice. However, the specific targets and detailed mechanism of action of SDSS are still unclear. OBJECTIVE: This study aims to investigate the efficacy and mechanism of SDSS in inhibiting inflammation in macrophages and stabilizing vulnerable plaques in atherosclerosis (AS). MATERIALS AND METHODS: The efficacy of SDSS in stabilizing vulnerable plaques was demonstrated using various techniques such as ultrasound, Oil Red O staining, HE staining, Masson staining, immunohistochemistry, and lipid analysis in ApoE-/- mice. Subsequently, IKKß was identified as a potential target of SDSS through protein microarray, network pharmacology analysis, and molecular docking. Additionally, ELISA, RT-qPCR, Western blotting, and immunofluorescence were employed to measure the levels of inflammatory cytokines, IKKß, and NF-κB pathway-related targets, thereby confirming the mechanism of SDSS in treating AS both in vivo and in vitro. Finally, the impact of SDSS was observed in the presence of an IKKß-specific inhibitor. RESULTS: Initially, the administration of SDSS led to a decrease in the formation and area of aortic plaque, while also stabilizing vulnerable plaques in ApoE-/- mice. Furthermore, it was identified that IKKß serves as the primary binding target of SDSS. Additionally, both in vivo and in vitro experiments demonstrated that SDSS effectively inhibits the NF-κB pathway by targeting IKKß. Lastly, the combined use of the IKKß-specific inhibitor IMD-0354 further enhanced the beneficial effects of SDSS. CONCLUSIONS: SDSS stabilized vulnerable plaques and suppressed inflammatory responses by inhibiting the NF-κB pathway through its targeting of IKKß.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/metabolismo , FN-kappa B/metabolismo , Quinasa I-kappa B/metabolismo , Transducción de Señal , Simulación del Acoplamiento Molecular , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Apolipoproteínas E/metabolismo
11.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445682

RESUMEN

Drug development for Alzheimer's disease, the leading cause of dementia, has been a long-standing challenge. Saponins, which are steroid or triterpenoid glycosides with various pharmacological activities, have displayed therapeutic potential in treating Alzheimer's disease. In a comprehensive review of the literature from May 2007 to May 2023, we identified 63 references involving 40 different types of saponins that have been studied for their effects on Alzheimer's disease. These studies suggest that saponins have the potential to ameliorate Alzheimer's disease by reducing amyloid beta peptide deposition, inhibiting tau phosphorylation, modulating oxidative stress, reducing inflammation, and antiapoptosis. Most intriguingly, ginsenoside Rg1 and pseudoginsenoside-F11 possess these important pharmacological properties and show the best promise for the treatment of Alzheimer's disease. This review provides a summary and classification of common saponins that have been studied for their therapeutic potential in Alzheimer's disease, showcasing their underlying mechanisms. This highlights the promising potential of saponins for the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Saponinas , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Saponinas/farmacología , Saponinas/uso terapéutico , Proteínas tau
12.
Mediators Inflamm ; 2023: 1097706, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292256

RESUMEN

Atherosclerosis, the main pathological basis of cardiovascular disease, is a chronic inflammatory disease that severely affects the quality of human life. Resveratrol (Res) is a natural polyphenol that is a major component of many herbs and foods. The present study analyzed resveratrol from the perspective of visualization and bibliometric analysis and found that resveratrol is closely related to the inflammatory response in cardiovascular diseases (associated with atherosclerosis). To explore the specific molecular mechanism of resveratrol, network pharmacology and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used, in which HIF-1α signaling may be a key pathway in the treatment of AS. Furthermore, we induced the polarization of macrophage RAW264.7 to M1 type to generate inflammatory response by the combination of lipopolysaccharide (LPS) (200 ng/mL) + interferon-γ (IFN-γ) (2.5 ng/mL). LPS and IFN-γ increased the inflammatory factor levels of IL-1ß, TNF-α, and IL-6 in RAW264.7, and the proportion of M1-type macrophages also increased, but the expression of inflammatory factors decreased after resveratrol administration, which confirmed the anti-inflammatory effect of resveratrol in AS. In addition, we found that resveratrol downregulated the protein expression of toll-like receptor 4 (TLR4)/NF-κB/hypoxia inducible factor-1 alpha (HIF-1α). In conclusion, resveratrol has a significant anti-inflammatory effect, alleviates HIF-1α-mediated angiogenesis, and prevents the progression of AS through the TLR4/NF-κB signaling pathway.


Asunto(s)
Aterosclerosis , FN-kappa B , Humanos , FN-kappa B/metabolismo , Resveratrol/farmacología , Resveratrol/uso terapéutico , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios , Aterosclerosis/tratamiento farmacológico
13.
Front Pharmacol ; 14: 1167260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214467

RESUMEN

Cardiorenal syndrome (CRS) results from complex interaction between heart and kidneys, inducing simultaneous acute or chronic dysfunction of these organs. Although its incidence rate is increasing with higher mortality in patients, effective clinical treatment drugs are currently not available. The literature suggests that renin-angiotensin-aldosterone system (RAAS) and diuretic natriuretic peptide (NP) system run through CRS. Drugs only targeting the RAAS and NPs systems are not effective. Sacubitril/valsartan contains two agents (sacubitril and valsartan) that can regulate RAAS and NPs simultaneously. In the 2017 American College of Cardiology/American Heart Association/American Heart Failure (HF) ssociation (ACC/AHA/HFSA) guideline, sacubitril/valsartan was recommended as standard therapy for HF patients. The latest research shows that Combined levosimendan and Sacubitril/Valsartan markets are protected the heart and kidney against cardiovascular syndrome in rat. However, fewer studies have reported its therapeutic efficacy in CRS treatment, and their results are inconclusive. Therefore, based on RAAS and NPs as CRS biomarkers, this paper summarizes possible pathophysiological mechanisms and preliminary clinical application effects of sacubitril/valsartan in the prevention and treatment of CRS. This will provide a pharmacological justification for expanding sacubitril/valsartan use to the treatment of CRS.

14.
Int J Biol Macromol ; 238: 124074, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36934816

RESUMEN

A novel chitosan-based porous composite adsorbent with multifunctional groups, such as phosphoric acid, amidoxime, and quaternary ammonium groups, was prepared to improve the adsorption rate and competitive uranium­vanadium adsorption of amidoxime group adsorbents. The maximum uranium adsorption capacity of PACNC was 962.226 mg g-1 at 308 K and pH = 7. The maximum adsorption rate constant of PACNC for uranium was 2.83E-2 g mg-1 min-1, which is 2.38 times that of ACNC (1.19E-2 g mg-1 min-1). Moreover, the adsorption equilibrium time was shortened from 300 (ACNC) to 50 (PACNC) min. In simulated and real seawater, the Kd and adsorption capacity of PACNC for uranium were approximately 8 and 6.62 times those for vanadium, respectively. These results suggest that phosphorylation significantly improved the competitive adsorption of uranium­vanadium and uranium adsorption rate. PACNC also exhibited good recycling performance and maintained stable adsorption capacity after five cycles. DFT calculations were used to analyze and calculate the possible co-complex structure of PACNC and uranium. The binding structure of phosphate and amidoxime is the most stable, and its synergistic effect effectively improves the competitive adsorption of uranium-vanadium of amidoxime. All the results demonstrated that PACNC has substantial application potential for uranium extraction from seawater.


Asunto(s)
Quitosano , Uranio , Uranio/química , Quitosano/química , Adsorción , Fosforilación , Vanadio , Agua de Mar/química
15.
Int J Mol Med ; 51(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36960868

RESUMEN

The inflammasome regulates innate immunity by serving as a signaling platform. The Nod­like receptor protein 3 (NLRP3) inflammasome, equipped with NLRP3, the adaptor protein apoptosis­associated speck­like protein (ASC) and pro­caspase­1, is by far the most extensively studied and well­characterized inflammasome. A variety of stimuli can activate the NLRP3 inflammasome. When activated, the NLRP3 protein recruits the adaptor ASC protein and activates pro­caspase­1, resulting in inflammatory cytokine maturation and secretion, which is associated with inflammation and pyroptosis. However, the aberrant activation of the NLRP3 inflammasome has been linked to various inflammatory diseases, including atherosclerosis, ischemic stroke, Alzheimer's disease, diabetes mellitus and inflammatory bowel disease. Therefore, the NLRP3 inflammasome has emerged as a promising therapeutic target for inflammatory diseases. In the present review, systematic searches were performed using 'NLRP3 inhibitor(s)' and 'inflammatory disease(s)' as key words. By browsing the literature from 2012 to 2022, 100 articles were retrieved, of which 35 were excluded as they were reviews, editorials, retracted or unavailable online, and 65 articles were included. According to the retrieved literature, the current understanding of NLRP3 inflammasome pathway activation in inflammatory diseases was summarize, and inhibitors of the NLRP3 inflammasome pathway targeting the NLRP3 protein and other inflammasome components or products were highlighted. Additionally, the present review briefly discusses the current novel efforts in clinical research.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Caspasa 1 , Inflamación/tratamiento farmacológico
16.
J Inflamm (Lond) ; 20(1): 8, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823573

RESUMEN

Chronic low-grade inflammation has been identified as a major contributor in the development of atherosclerosis. Nuclear Factor-κappa B (NF-κB) is a critical transcription factors family of the inflammatory pathway. As a major catalytic subunit of the IKK complex, IκB kinase ß (IKKß) drives canonical activation of NF-κB and is implicated in the link between inflammation and atherosclerosis, making it a promising therapeutic target. Various natural product derivatives, extracts, and synthetic, show anti-atherogenic potential by inhibiting IKKß-mediated inflammation. This review focuses on the latest knowledge and current research landscape surrounding anti-atherosclerotic drugs that inhibit IKKß. There will be more opportunities to fully understand the complex functions of IKKß in atherogenesis and develop new effective therapies in the future.

17.
Carbohydr Polym ; 300: 120270, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36372493

RESUMEN

In this study, a novel sponge phosphoric acid functionalized porous composite adsorbent (named SPCCHC) was prepared from chitosan and chlorella hydrothermal charcoal. Kinetics and thermodynamics experiments showed that the theoretical maximum adsorption capacity of SPCCHC to U(VI) is 579.27 mg/g (288 K, pH = 6.5), indicating a spontaneous exothermic reaction. SPCCHC showed good adsorption selectivity for uranium in the adsorption studies of simulated seawater and a mixed solution of uranium-vanadium. The characterization of SPCCHC before and after U(VI) adsorption proves that the introduction of the phosphate group can greatly improve the adsorption effect of the adsorbent on uranium, particularly the distribution coefficients of uranium and vanadium differ by up to 89.5 times. At the same time, SPCCHC has good recycling performance, which is expected to be used in natural seawater uranium extraction.


Asunto(s)
Quitosano , Chlorella , Uranio , Uranio/química , Quitosano/química , Vanadio , Adsorción , Cinética
18.
Metabolomics ; 18(11): 79, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36260187

RESUMEN

BACKGROUND: Restless legs syndrome (RLS) is a neuromotor disorder, and dialysis patients are more likely to develop RLS. RLS often causes sleep disorders, anxiety and depression in patients. It will increase the risk of death and severely affect the life of patients. At present, RLS has not received enough recognition and attention, and the misdiagnosis rate can reach more than 10%. METHODS: The discovery set selected 30 peritoneal dialysis (PD) patients and 27 peritoneal dialysis patients with RLS (PD-RLS). A metabolomics method based on ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometric method (UPLC-Q-TOF/MS) was used to analyze the differential metabolites of the two groups. 51 PD patients and 51 PD-RLS patients were included in the validation set. The receiver operating characteristic (ROC) analysis was used to evaluate the early diagnostic biomarkers, and the correlation between the differential metabolites and laboratory test indexes was analyzed to explore the biological function of the differential metabolites. RESULTS: Through the integrated analysis, four metabolites can be used as markers for the diagnosis of PD-RLS, including Hippuric acid, Phenylacetylglutamine, N,N,N-Trimethyl-L-alanyl-L-proline betaine and Threonic acid. Through ROC analysis, it is found that they can be used as a metabolic biomarker panel, and the area under the curve of this combination is more than 0.9, indicating that the panel has good diagnostic and predictive ability. CONCLUSION: Metabolomics based on UPLC-Q-TOF/MS technology can effectively identify the potential biomarkers, and provide a theoretical basis for the early diagnosis, prevention and treatment on PD-RLS.


Asunto(s)
Diálisis Peritoneal , Síndrome de las Piernas Inquietas , Humanos , Síndrome de las Piernas Inquietas/diagnóstico , Síndrome de las Piernas Inquietas/etiología , Betaína , Calidad de Vida , Metabolómica , Diálisis Peritoneal/efectos adversos
19.
Biomed Pharmacother ; 155: 113696, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36116247

RESUMEN

Secondary insult from cerebral ischemia-reperfusion injury (CIRI) is a major risk factor for poor prognosis of cerebral ischemia. Saponins are steroid or triterpenoid glycosides with various pharmacological activities that are effective in treating CIRI. By browsing the literature from 2001 to 2021, 55 references involving 24 kinds of saponins were included. Saponins were shown to relieve CIRI by inhibiting oxidation stress, neuroinflammation, and apoptosis, restoring BBB integrity, and promoting neurogenesis and angiogenesis. This review summarizes and classifies several common saponins and their mechanisms in relieving CIRI. Information provided in this review will benefit researchers to design, research and develop new medicines to treat CIRI-related conditions with saponins.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Saponinas , Triterpenos , Humanos , Saponinas/farmacología , Saponinas/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Estrés Oxidativo , Triterpenos/farmacología , Triterpenos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Esteroides/farmacología
20.
Int J Mol Med ; 49(6)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35419616

RESUMEN

Post­ischemic neuroinflammation induced by the innate local immune response is a major pathophysiological feature of cerebral ischemic stroke, which remains the leading cause of mortality and disability worldwide. NLR family pyrin domain containing (NLRP)3 inflammasome crucially mediates post­ischemic inflammatory responses via its priming, activation and interleukin­1ß release during hypoxic­ischemic brain damage. Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. In the present review, focus was addressed on the role of mitochondria in cerebral ischemic stroke while keeping NLRP3 inflammasome as a link. Under ischemia and hypoxia, mitochondria are capable of controlling NLRP3 inflammasome­mediated neuroinflammation through mitochondrial released contents, mitochondrial localization and mitochondrial related proteins. Thus, inflammasome and mitochondria may be attractive targets to treat ischemic stroke as well as the several drugs that target the process of mitochondrial function to treat cerebral ischemic stroke. At present, certain drugs have already been studied in clinical trials.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estudios Prospectivos , Accidente Cerebrovascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...