Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
J Environ Sci (China) ; 150: 78-90, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306442

RESUMEN

The migration and transformation of hexavalent chromium (Cr(VI)) in the environment are regulated by pyrite (FeS2). However, variations in pyrite crystal facets influence the adsorption behavior and electron transfer between pyrite and Cr(VI), thereby impacting the Cr(VI) reduction performance. Herein, two naturally common facets of pyrite were synthesized hydrothermally to investigate the facet-dependent mechanisms of Cr(VI) reduction. The experimental results revealed that the {111} facet exhibited approximately 1.30-1.50 times higher efficiency in Cr(VI) reduction compared to the {100} facet. Surface analyses and electrochemical results indicated that {111} facet displayed a higher iron-sulfur oxidation level, which was affected by its superior electrochemical properties during the reaction with Cr(VI). Density functional theory (DFT) calculations demonstrated that the narrower band gap and lower work function on {111} facet were more favorable for the electron transfer between Fe(II) and Cr(VI). Furthermore, different adsorption configurations were observed on {100} and {111} surfaces due to the unique arrangements of Fe and S atoms. Specifically, O atoms in Cr2O72- directly bound with the S sites on {100} but the Fe sites on {111}. According to the density of states (DOS), the Fe site had better reactivity than the S site in the reaction, which appeared to be related to the fracture of S-S bonds. Additionally, the adsorption configuration of Cr2O72- on {111} surface showed a stronger adsorption energy and a more stable coordination mode, favoring subsequent Cr(VI) reduction process. These findings provide an in-depth analysis of facet-dependent mechanisms underlying Cr(VI) reduction behavior, offering new insights into studying environmental interactions between heavy metals and natural minerals.


Asunto(s)
Cromo , Hierro , Oxidación-Reducción , Sulfuros , Cromo/química , Hierro/química , Sulfuros/química , Modelos Químicos , Adsorción
2.
Artículo en Inglés | MEDLINE | ID: mdl-39255176

RESUMEN

Single Image Super-Resolution (SISR) aims to reconstruct a high-resolution image from its corresponding low-resolution input. A common technique to enhance the reconstruction quality is Non-Local Attention (NLA), which leverages self-similar texture patterns in images. However, we have made a novel finding that challenges the prevailing wisdom. Our research reveals that NLA can be detrimental to SISR and even produce severely distorted textures. For example, when dealing with severely degrade textures, NLA may generate unrealistic results due to the inconsistency of non-local texture patterns. This problem is overlooked by existing works, which only measure the average reconstruction quality of the whole image, without considering the potential risks of using NLA. To address this issue, we propose a new perspective for evaluating the reconstruction quality of NLA, by focusing on the sub-pixel level that matches the pixel-wise fusion manner of NLA. From this perspective, we provide the approximate reconstruction performance upper bound of NLA, which guides us to design a concise yet effective Texture-Fidelity Strategy (TFS) to mitigate the degradation caused by NLA. Moreover, the proposed TFS can be conveniently integrated into existing NLA-based SISR models as a general building block. Based on the TFS, we develop a Deep Texture-Fidelity Network (DTFN), which achieves state-of-the-art performance for SISR. Our code and a pre-trained DTFN are available on GitHub for verification.

3.
Hortic Res ; 11(9): uhae191, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39257538

RESUMEN

Purple tea, rich in anthocyanins, has a variety of health benefits and is attracting global interest. However, the regulation mechanism of anthocyanin in purple tea populations has not been extensively studied. In this experiment, RNA-seq, BSA-seq, and BSR-seq were performed using 30 individuals with extreme colors (dark-purple and green) in an F 1 population of 'Zijuan' and 'Jinxuan'. The results show that 459 genes were differentially expressed in purple and green leaves, among which genes involved in the anthocyanin synthesis and transport pathway, such as CHS, F3H, ANS, MYB75, GST, MATE, and ABCC, were highly expressed in purple leaves. Moreover, there were multiple SNP/InDel variation sites on chromosomes 2 and 14 of the tea plant, as identified by BSA-seq. The integrated analysis identified two highly expressed genes (CsANS and CsMYB75) with SNP/InDel site variations in the purple tea plants. By silencing leaves, we proved that CsMYB75 could positively regulate anthocyanin accumulation and expression of related structural genes in tea plants. A 181-bp InDel in the CsMYB75 promoter was also found to be co-segregating with leaf color. The results of this study provide a theoretical reference for the molecular mechanism of anthocyanin accumulation in purple tea plants and contribute to the creation of new tea cultivars with high anthocyanin content.

4.
Radiat Res ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142655

RESUMEN

Radiotherapy is a common therapeutic strategy for various solid tumors, with vascular endothelial injury being a common side effect. The study aimed to examine the effect of long non-coding RNA PVT1 on radiation-induced vascular endothelial cell injury, and explore the possible underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were exposed to different doses of X ray to mimic radiation. LncRNA and miRNA levels were detected via qRT-PCR. Interaction between lncRNA and miRNAs was determined through dual-luciferase reporter assay. Statistical processing was conducted using student's t test between two groups and one-way ANOVA among multiple groups, and P < 0.05 means a significant difference. GO and KEGG were performed for the function and pathway enrichment analysis. LncRNA PVT1 elevated along with the increase of radiation dose in HUVECs. Poorly expressed lncRNA PVT1 promotes cell viability and inhibits oxidative stress. PVT1 serves as a competitive endogenous RNA (ceRNA) of miR-9-5p. miR-9-5p inhibitor inverted the influence of PVT1 knockdown on radiation-stimulated cell apoptosis and oxidative stress in HUVECs. KEGG analysis identified significant enrichment of the MAPK signaling pathway among overlapping target genes of miR-9-5p. LncRNA PVT1 knockdown alleviated radiation-induced vascular endothelial injury via sponging miR-9-5p. The underlying mechanism might be probably MAPK signaling-related.

5.
Materials (Basel) ; 17(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203291

RESUMEN

Concrete production is associated with extensive energy consumption and significant CO2 emissions. In addition, tremendous amounts of freshwater are used as a mixing agent. Urgency is increasing to develop sustainable cementitious materials and promote freshwater-saving strategies. An environmentally friendly alternative binder, seawater mixed with one part alkali activated material, is studied. In this work, a cradle-to-gate life cycle assessment was applied to study the equivalent CO2 emission and cost properties of the clinker-free binder. The seawater mixed mortar possesses comparable mechanical properties to Portland cement, with 3 d flexural and compressive strengths of 5.3 MPa and 25.2 MPa. In addition, the mortar developed in this work is of similar cost as commercial cement, but reduces CO2 emissions by 44.8%.

6.
RSC Adv ; 14(30): 21623-21634, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38979472

RESUMEN

Carbon nanofiber membranes (CNMs) are expected to be used in many energy devices to improve the reaction rate. In this paper, CNMs embedded with palladium nanoparticles (Pd-CNMs) were prepared by electrospinning and carbonization using polyimide as the raw material. The effects of carbonization temperature, carbonization atmosphere, and heating rate on the physicochemical properties of the as-obtained Pd-CNMs were studied in detail. On this basis, the electrocatalytic performance of Pd-CNMs prepared under optimal conditions was characterized. The results showed that highly active zero-valent palladium nanoparticles with uniform particle size could be distributed on the surface of carbon nanofibers. Under vacuum conditions, at a carbonization temperature of 800 °C and a heating rate of 2 °C min-1, Pd-CNMs have lower H2O2 yield, lower Tafel slope (73.3 mV dec-1), higher electron transfer number (∼4), and superior durability, suggesting that Pd-CNMs exhibit excellent electrocatalytic activity for ORR in alkaline electrolyte. Therefore, polyimide-derived CNMs embedded with Pd nanoparticles are expected to become an excellent cathode catalyst layer for fuel cells.

7.
Chemosphere ; 363: 142955, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39069100

RESUMEN

As one of the important microorganisms in the mining area, the role of iron-sulfur oxidizing microorganisms in antimony (element symbolized as Sb) migration and transformation in mining environments has been largely neglected for a long time. Therefore, the processes of the typical iron-sulfur oxidizing bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) and pyrite interaction coupled with the migration and transformation of Sb were investigated in this paper. The bio-oxidation process of pyrite by A. ferrooxidans not only accelerates the oxidation rate of Sb(III) to Sb(V) (62.93% of 10 mg L-1 within 4 h), but also promotes the adsorption and precipitation of Sb (32.89 % of 10 mg L-1 within 96 h), and changes in the dosage of minerals, Sb concentration, and pH value affect the conversion of Sb. The characterization results show that the interaction between A. ferrooxidans and pyrite produces a variety of reactive species, such as H2O2 and •OH, resulting in the oxidation of Sb(III). In addition, A. ferrooxidans mediates the formation of stereotyped iron-sulfur secondary minerals that can act as a major driver of Sb (especially Sb(V)) adsorption or co-precipitation. This study contributes to the further understanding of the diversified biogeochemical processes of iron-sulfur oxidizing bacteria-iron-sulfur minerals-toxic metals in mining environments and provides ideas for the development of in-situ treatment technologies for Sb.


Asunto(s)
Acidithiobacillus , Antimonio , Hierro , Minerales , Minería , Oxidación-Reducción , Especies Reactivas de Oxígeno , Sulfuros , Antimonio/metabolismo , Antimonio/química , Acidithiobacillus/metabolismo , Hierro/metabolismo , Hierro/química , Sulfuros/metabolismo , Sulfuros/química , Minerales/metabolismo , Minerales/química , Especies Reactivas de Oxígeno/metabolismo , Adsorción , Peróxido de Hidrógeno/metabolismo
8.
Environ Sci Pollut Res Int ; 31(37): 49575-49588, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39080164

RESUMEN

The heavy metal contamination in river and lake sediments endangers aquatic ecosystems. Herein, the feasibility of applying different exogenous mesophile consortiums in bioleaching multiple heavy metal-contaminated sediments from Xiangjiang River was investigated, and a comprehensive functional gene array (GeoChip 5.0) was used to analyze the functional gene expression to reveal the intrinsic association between metal solubilization efficiency and consortium structure. Among four consortiums, the Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans consortium had the highest solubilization efficiencies of Cu, Pb, Zn, and Cd after 15 days, reaching 50.33, 29.93, 47.49, and 79.65%, while Cu, Pb, and Hg had the highest solubilization efficiencies after 30 days, reaching 63.67, 45.33, and 52.07%. Geochip analysis revealed that 31,346 genes involved in different biogeochemical processes had been detected, and the systems of 15 days had lower proportions of unique genes than those of 30 days. Samples from the same stage had more genes overlapping with each other than those from different stages. Plentiful metal-resistant and organic remediation genes were also detected, which means the metal detoxification and organic pollutant degradation had happened with the bioleaching process. The Mantel test revealed that Pb, Zn, As, Cd, and Hg solubilized from sediment influenced the structure of expressed microbial functional genes during bioleaching. This work employed GeoChip to demonstrate the intrinsic association between functional gene expression of mesophile consortiums and the bioleaching efficiency of heavy metal-contaminated sediment, and it provides a good reference for future microbial consortium design and remediation of river and lake sediments.


Asunto(s)
Sedimentos Geológicos , Metales Pesados , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Contaminantes Químicos del Agua
9.
Virol J ; 21(1): 146, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918816

RESUMEN

The genus Jeilongvirus comprises non-segmented negative-stranded RNA viruses that are classified within the Paramyxoviridae family by phylogeny. Jeilongviruses are found in various reservoirs, including rodents and bats. Rodents are typical viral reservoirs with diverse spectra and zoonotic potential. Little is currently known about jeilongviruses in rodents from central China. The study utilized high-throughput and Sanger sequencing to obtain jeilongvirus genomes, including those of two novel strains (HBJZ120/CHN/2021 (17,468 nt) and HBJZ157/CHN/2021 (19,143 nt)) and three known viruses (HBXN18/CHN/2021 (19,212 nt), HBJZ10/CHN/2021 (19,700 nt), HBJM106/CHN/2021 (18,871 nt)), which were characterized by genome structure, identity matrix, and phylogenetic analysis. Jeilongviruses were classified into three subclades based on their topology, phylogeny, and hosts. Based on the amino acid sequence identities and phylogenetic analysis of the L protein, HBJZ120/CHN/2021 and HBJZ157/CHN/2021 were found to be strains rather than novel species. Additionally, according to specific polymerase chain reaction screening, the positive percentage of Beilong virus in Hubei was 6.38%, suggesting that Beilong virus, belonging to the Jeilongvirus genus, is likely to be widespread in wild rodents. The identification of novel strains further elucidated the genomic diversity of jeilongviruses. Additionally, the prevalence of jeilongviruses in Hubei, China, was profiled, establishing a foundation for the surveillance and early warning of emerging paramyxoviruses.


Asunto(s)
Genoma Viral , Filogenia , Roedores , Animales , China , Roedores/virología , Animales Salvajes/virología , Paramyxovirinae/genética , Paramyxovirinae/clasificación , Paramyxovirinae/aislamiento & purificación , ARN Viral/genética , Infecciones por Paramyxoviridae/veterinaria , Infecciones por Paramyxoviridae/virología , Infecciones por Paramyxoviridae/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Reservorios de Enfermedades/virología , Análisis de Secuencia de ADN
10.
Chemosphere ; 362: 142682, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914286

RESUMEN

The escalating threat of Cr(VI) pollution to the environment and human health can be effectively controlled through microbial methods, which are promising, safe, and ecofriendly. To enhance Cr(VI) removal efficiency, scholars have been optimizing strains. However, synergies between in-situ soil particles and crucial microorganisms in soil have rarely been investigated. In this study, Cr(VI) was removed by collaborating with in-situ soil particles and key microorganisms in the soil. The results indicated that within 48 hours, the removal rate of Cr(VI) reached over 99% in the soils+microflora system, which was 45% higher than that of the microflora system alone. Factors such as Cr(VI) concentration, soil dosage, pH level, oxygen availability, and electron donors influenced the removal efficiency of Cr(VI) in the soils+microflora system. The cyclic experiments showed that soil particles effectively prevented chromium invasion on microflora, promoting the growth of crucial microorganisms. The addition of microflora can effectively regulate the composition of soil flora and enhance the efficiency of chromium reduction. Moreover, two strains each of Ochrobactrum sp. and Paenarthrobacter sp., exhibiting remarkable tolerance to Cr(VI), were successfully isolated from these soils, significantly enhancing the reduction capacity of the indigenous microflora towards Cr(VI). Additionally, 16S rRNA-PCR sequence analysis revealed that in-situ soil particles not only synergistically collaborated with the resident microflora for efficient removal of Cr(VI), but also facilitated the proliferation of key microbiota such as Ochrobactrum sp. and Paenarthrobacter sp. Remarkably, when exposed to an initial concentration of 50 mg/L Cr(VI), complete removal was achieved by Paenarthrobacter-2 within a time frame as short as 60 hours. This research found four novel highly efficient strains for reducing Cr(VI) and provides an innovative method for the synergistic interaction between indigenous soil microflora and soil particles to remove heavy metal ions from wastewater.


Asunto(s)
Biodegradación Ambiental , Cromo , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Cromo/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , Ochrobactrum/metabolismo , Oxidación-Reducción
11.
Infect Genet Evol ; 121: 105602, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734397

RESUMEN

Hepatitis E, caused by the hepatitis E virus (HEV), is a global public health issue. Low similarity between the gene sequences of mouse and human HEV led to the belief that the risk of human infection was low. Recent reports of chronic and acute hepatitis E caused by murine HEV infection in humans in Hong Kong have raised global concerns. Therefore, it is crucial to investigate the epidemiology and prevalence of HEV in China. We comprehensively analyzed different rodent HEV strains to understand rocahepevirus occurrence in Hubei Province, China. The HEV positivity rate for was 6.43% (73/1136). We identified seven near-full-length rocahepevirus strains and detected rat HEV antigens in tissues from different mouse species. HEV has extensive tissue tropism and a high viral load in the liver. We highlight the genetic diversity of HEVs in rodents and underscore the importance of paying attention to their variation and evolution.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Filogenia , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/clasificación , Animales , China/epidemiología , Hepatitis E/epidemiología , Hepatitis E/veterinaria , Hepatitis E/virología , Prevalencia , Ratones , Roedores/virología , Ratas , Animales Salvajes/virología , Variación Genética
12.
J Hazard Mater ; 472: 134515, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703676

RESUMEN

The efficient activation and selective high-valent metal-oxo (HVMO) species generation remain challenging for peroxymonosulfate (PMS)-based advanced oxidation processes (PMS-AOPs) in water purification. The underlying mechanism of the activation pathway is ambiguous, leading to a massive dilemma in the control and regulation of HVMO species generation. Herein, bioinspired by the bio-oxidase structure of cytochrome P450, the axial coordination strategy was adopted to tailor a single-atom cobalt catalyst (CoN4S-CB) with an axial S coordination. CoN4S-CB high-selectively generated high-valent Co-Oxo species (Co(IV)=O) via PMS activation. Co(IV)=O demonstrated an ingenious oxygen atom transfer (OAT) reaction to achieve the efficient degradation of sulfamethoxazole (SMX), and this allowed robust operation in various complex environments. The axial S coordination modulated the 3d orbital electron distribution of the Co atom. Density functional theory (DFT) calculation revealed that the axial S coordination decreased the energy barrier for PMS desorption and lowered the free energy change (ΔG) for Co(IV)=O generation. CoN4S-PMS* had a narrow d-band close to the Fermi level, which enhanced charge transfer to accelerate the cleavage of O-O and O-H bonds in PMS. This work provides a broader perspective on the activator design with natural enzyme structure-like active sites to efficient activate PMS for selective HVMO species generation.


Asunto(s)
Cobalto , Oxidación-Reducción , Peróxidos , Cobalto/química , Catálisis , Peróxidos/química , Sulfametoxazol/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Oxígeno/química , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Teoría Funcional de la Densidad
13.
Gen Hosp Psychiatry ; 88: 61-67, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38508077

RESUMEN

CONTEXT: Many patients recovering from surgery in wards are disturbed by environmental noise. However, the effects of environmental noise on postoperative pain are unclear. OBJECTIVES: This study aimed to assess the association between postoperative noise and pain. METHODS: This prospective study included 182 women who underwent cesarean sections. Postoperative noise was continuously recorded, and pain intensity at rest was assessed using a numerical rating scale (NRS) for 0-6, 6-12, 12-18, and 18-24 h after the patients were returned to the ward. Cumulative pain scores were calculated by summing the NRS scores at each time point and comprised the primary outcome. The maximum pain NRS score and analgesic consumption during the 24 h after surgery were also recorded. RESULTS: Mean environmental noise intensity during the daytime was an independent factor for cumulative pain scores, maximum pain scores, and analgesic use during the first postoperative 24 h (ß, 0.37; 95% CI, 0.21-0.53 and ß, 0.12; 95% CI, 0.07-0.17; P < 0.001 for both; ß, 0.86; 95% CI, 0.25-1.46; P = 0.006). Cumulative and maximum NRS pain scores as well as the incidence of NRS ≥ 4 were significantly higher in patients under mean daytime environmental noise of ≥58, than <58 decibels (dB) (8.0 [6.0-11.3] vs. 6.0 (5.0-7.0); 3.0 [2.0-4.0] vs. 2.0 [2.0-2.0, and 25.6% vs. 11.0%; RR, 2.32; 95% CI, 1.19-4.54, respectively; P < 0.001 for all). CONCLUSIONS: Higher-level postoperative noise exposure was associated with more severe postoperative pain and increased analgesic needs, as well as a higher incidence of moderate-to-severe pain in patients recovering from cesarean delivery. Our findings indicate that reducing environmental ward noise might benefit for postoperative pain management.


Asunto(s)
Analgésicos , Dolor Postoperatorio , Embarazo , Humanos , Femenino , Estudios Prospectivos , Analgésicos/uso terapéutico , Dolor Postoperatorio/epidemiología , Dolor Postoperatorio/etiología , Dimensión del Dolor , Analgésicos Opioides
14.
Artículo en Inglés | MEDLINE | ID: mdl-38194387

RESUMEN

Partial label learning (PLL) studies the problem of learning instance classification with a set of candidate labels and only one is correct. While recent works have demonstrated that the Vision Transformer (ViT) has achieved good results when training from clean data, its applications to PLL remain limited and challenging. To address this issue, we rethink the relationship between instances and object queries to propose K-means cross-attention transformer for PLL (KMT-PLL), which can continuously learn cluster centers and be used for downstream disambiguation tasks. More specifically, K-means cross-attention as a clustering process can effectively learn the cluster centers to represent label classes. The purpose of this operation is to make the similarity between instances and labels measurable, which can effectively detect noise labels. Furthermore, we propose a new corrected cross entropy formulation, which can assign weights to candidate labels according to the instance-to-label relevance to guide the training of the instance classifier. As the training goes on, the ground-truth label is progressively identified, and the refined labels and cluster centers in turn help to improve the classifier. Simulation results demonstrate the advantage of the KMT-PLL and its suitability for PLL.

15.
IEEE Trans Image Process ; 33: 610-624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38190673

RESUMEN

Recent developments in the field of non-local attention (NLA) have led to a renewed interest in self-similarity-based single image super-resolution (SISR). Researchers usually use the NLA to explore non-local self-similarity (NSS) in SISR and achieve satisfactory reconstruction results. However, a surprising phenomenon that the reconstruction performance of the standard NLA is similar to that of the NLA with randomly selected regions prompted us to revisit NLA. In this paper, we first analyzed the attention map of the standard NLA from different perspectives and discovered that the resulting probability distribution always has full support for every local feature, which implies a statistical waste of assigning values to irrelevant non-local features, especially for SISR which needs to model long-range dependence with a large number of redundant non-local features. Based on these findings, we introduced a concise yet effective soft thresholding operation to obtain high-similarity-pass attention (HSPA), which is beneficial for generating a more compact and interpretable distribution. Furthermore, we derived some key properties of the soft thresholding operation that enable training our HSPA in an end-to-end manner. The HSPA can be integrated into existing deep SISR models as an efficient general building block. In addition, to demonstrate the effectiveness of the HSPA, we constructed a deep high-similarity-pass attention network (HSPAN) by integrating a few HSPAs in a simple backbone. Extensive experimental results demonstrate that HSPAN outperforms state-of-the-art approaches on both quantitative and qualitative evaluations. Our code and a pre-trained model were uploaded to GitHub (https://github.com/laoyangui/HSPAN) for validation.

16.
J Phys Chem Lett ; 14(38): 8563-8570, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37724994

RESUMEN

Nanomaterials of halide perovskites have attracted increasing attention for their remarkable potential in optoelectronic devices, but their instability to environmental factors is the core issue impeding their applications. In this context, the microscopic understanding of their structural degradation mechanisms upon external stimuli remains incomplete. Herein, we took an emerging member of this material family, Cs4PbBr6 nanocrystals (NCs), as an example and investigated the degradation pathways as well as underlying mechanisms under an electron beam by using in situ transmission electron microscopy. Our atomic-scale study identified the distinct degradation stages for the NCs toward interesting coffee-ring PbBr2 structures, which are caused by the organic surface capping agents as well as surface energy of NCs. Our findings present a fundamental insight for the degradation of halide perovskite NCs and may provide indispensable guidance for their structural design and stability improvement.

17.
Water Res ; 245: 120589, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708773

RESUMEN

Elemental sulfur (S0) plays a vital role in the coupled cycling of sulfur and iron, which in turn affects the transformation of carbon and various pollutants. These processes have been well characterized under static anoxic or oxic conditions, however, how the natural redox fluctuations affect the bio-mediated sulfur cycling and coupled iron cycling remain enigmatic. The present work examined S0 disproportionation as driven by natural microbial communities under fluctuating redox conditions and the contribution of S0 disproportionation to ferrihydrite transformation. Samples were incubated at either neutral or alkaline pH values, applying sequential anaerobic, aerobic and anaerobic conditions over 60 days. Under anaerobic conditions, S0 was found to undergo disproportionation to sulfate and sulfide, which subsequently reduced ferrihydrite at both pH 7.4 and 9.5. Ferrihydrite promoted S0 disproportionation by scavenging biogenic sulfide and maintaining a suitable degree of sulfate formation. After an oxic period, during the subsequent anoxic incubation, bioreduction of sulfate occurred and the biogenic sulfide reduced iron (hydr)oxides at a rate approximately 25 % lower than that observed during the former anoxic period. A 16S rDNA-based microbial community analysis revealed changes in the microbial community in response to the redox fluctuations, implying an intimate association with the coupled cycling of sulfur and iron. Microscopic and spectroscopic analyses confirmed the S0-mediated transformation of ferrihydrite to crystalline iron (hydr)oxide minerals such as lepidocrocite and magnetite and the formation of iron sulfides precipitated under fluctuating redox conditions. Finally, a reaction mechanism based on mass balance was proposed, demonstrating that bio-mediated sulfur transformation maintained a sustainable redox reaction with iron (hydr)oxides under fluctuating anaerobic-aerobic-anaerobic conditions tested in this study. Altogether, the finding of our study is critical for obtaining a more complete understanding of the dynamics of iron redox reactions and pollutant transformation in sulfur-rich aquatic environments.

18.
Environ Sci Pollut Res Int ; 30(39): 91125-91139, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37470976

RESUMEN

Dewatering is critical to oily cold rolling mill (CRM) sludge treatment. Therefore, finding an efficient, energy-saving, and applicable dewatering technology for oily CRM sludge is still urgent. This study investigated the performance of quicklime as a conditioning agent for oily CRM sludge conditioning and dewatering. The interactive effects of quicklime dosage, temperature, and time on filter cake's specific resistance to filtration (SRF) and the dewatering rate of oily CRM sludge were studied by response surface methodology (RSM). The optimal parameters for conditioning oily CRM sludge were quicklime dosage of 18.7%, temperature of 54 °C, and time of 43.3 min, which resulted in filter cake SRF of 0.50 × 1010 m/kg and dewatering rate of 61.2%. The viscosity of oily CRM sludge could be reduced by 90% after conditioned with quicklime, which caused by the neutralization or hydrolysis of high viscosity organic matter in the oil phase with quicklime to produce low viscosity organic matter. The study indicated the excellent performance of quicklime as a conditioning agent for oily CRM sludge treatment and provided an effective route for the recycling of the oily CRM sludge for steel production.


Asunto(s)
Óxidos , Aguas del Alcantarillado , Compuestos de Calcio , Frío , Filtración , Aceites , Agua , Eliminación de Residuos Líquidos/métodos
19.
Behav Brain Res ; 452: 114569, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37419331

RESUMEN

This study aimed to explore the role of SYNJ1 in Parkinson's disease (PD) and its potential as a neuroprotective factor. We found that SYNJ1 was decreased in the SN and striatum of hSNCA*A53T-Tg and MPTP-induced mice compared to normal mice, associated with motor dysfunction, increased α-synuclein and decreased tyrosine hydroxylase. To investigate its neuroprotective effects, SYNJ1 expression was upregulated in the striatum of mice through injection of the rAdV-Synj1 virus into the striatum, which resulted in the rescue of behavioral deficiencies and amelioration of pathological changes. Subsequently, transcriptomic sequencing, bioinformatics analysis and qPCR were conducted in SH-SY5Y cells following SYNJ1 gene knockdown to identify its downstream pathways, which revealed decreased expression of TSP-1 involving extracellular matrix pathways. The virtual protein-protein docking further suggested a potential interaction between the SYNJ1 and TSP-1 proteins. This was followed by the identification of a SYNJ1-dependent TSP-1 expression model in two PD models. The coimmunoprecipitation experiment verified that the interaction between SYNJ1 and TSP-1 was attenuated in 11-month-old hSNCA*A53T-Tg mice compared to normal controls. Our findings suggest that overexpression of SYNJ1 may protect hSNCA*A53T-Tg and MPTP-induced mice by upregulating TSP-1 expression, which is involved in the extracellular matrix pathways. This suggests that SYNJ1 could be a potential therapeutic target for PD, though more research is needed to understand its mechanism.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Humanos , Animales , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/tratamiento farmacológico , Trombospondina 1 , Neuroblastoma/tratamiento farmacológico , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Fármacos Neuroprotectores/farmacología , Neuroprotección , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
20.
Environ Sci Pollut Res Int ; 30(40): 91617-91635, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37516705

RESUMEN

The semi-dry flue gas desulfurization ash (SFGDA) is an industrial waste generated by the semi-dry desulfurization process, and its resources have been continuously attracted attention. Through the method of heat decomposition, the SFGDA decomposed into CaO and SO2 has emerged as a prominent research topic. This paper summarizes various of research workers, who revealed that the decomposition temperature of CaSO4 in SFGDA is greater than 1678 K and 1603 K in the air atmosphere and N2 atmosphere, respectively, presenting challenges such as high energy consumption and limited economic feasibility. On the one hand, the effects of CO and C regulating the pyrolysis atmosphere on reducing the pyrolysis temperature were reviewed. On the other hand, the impact of additives such as Fe2O3 and FeS2 was considered. Ultimately, the joint effects of regulating atmosphere and additives were discussed, and an efficient and low-temperature decomposition route was obtained; adding solid C source and Fe2O3 for pyrolysis reaction, the decomposition temperature of CaSO4 can be reduced by at least 230 K and desulfurization efficiency exceeds 95% under the condition of micro-oxidizing atmosphere. Moreover, the CaO resulting from SFGDA decomposition can be further synthesized into calcium ferrite, while the enriched SO2 can be utilized for the production of industrial sulfuric acid, which holds promising prospects for large-scale industrial applications.


Asunto(s)
Gases , Calor , Humanos , Temperatura , Frío , Residuos Industriales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...