Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci ; 350: 122672, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705456

RESUMEN

Non-esterified fatty acids (NEFAs), key to energy metabolism, may become pathogenic at elevated levels, potentially eliciting immune reactions. Our laboratory's findings of reduced L-histidine in ketotic states, induced by heightened NEFA concentrations, suggest an interrelation with NEFA metabolism. This observation necessitates further investigation into the mitigating role of L-histidine on the deleterious effects of NEFAs. Our study unveiled that elevated NEFA concentrations hinder the proliferation of Bovine Mammary Epithelial Cells (BMECs) and provoke inflammation in a dose-responsive manner. Delving into L-histidine's influence on BMECs, RNA sequencing revealed 2124 genes differentially expressed between control and L-histidine-treated cells, with notable enrichment in pathways linked to proliferation and immunity, such as cell cycle and TNF signaling pathways. Further analysis showed that L-histidine treatment positively correlated with an increase in EdU-555-positive cell rate and significantly suppressed IL-6 and IL-8 levels (p < 0.05) compared to controls. Crucially, concurrent treatment with high NEFA and L-histidine normalized the number of EdU-555-positive cells and cytokine expression to control levels. Investigating the underlying mechanisms, Gab2 (Grb2-associated binder 2) emerged as a central player; L-histidine notably reduced Gab2 expression, while NEFA had the opposite effect (p < 0.05). Gab2 overexpression escalated nitric oxide (NO) production and IL6 and IL8 expression. However, L-histidine addition to Gab2-overexpressing cells resulted in NO concentrations indistinguishable from controls. Our findings collectively indicate that L-histidine can counteract NEFA-induced inflammation in BMECs by inhibiting Gab2 expression, highlighting its therapeutic potential against NEFA-related metabolic disturbances.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Ácidos Grasos no Esterificados , Histidina , Inflamación , Animales , Ácidos Grasos no Esterificados/metabolismo , Bovinos , Inflamación/metabolismo , Histidina/farmacología , Histidina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Femenino , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo
2.
Mol Biotechnol ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37847361

RESUMEN

Integrin beta 4 (ITGB4) is a vital factor for numerous cancers. However, no reports regarding ITGB4 in small cell lung carcinoma (SCLC) have been found in the existing literature. This study systematically investigated the expression and clinical value of ITGB4 in SCLC using multi-center and large-sample (n = 963) data. The ITGB4 expression levels between SCLC and control tissues were compared using standardized mean difference and Wilcoxon rank-sum test. The clinical significance of the gene in SCLC was observed using Cox regression and Kaplan-Meier curves. ITGB4 is overexpressed in multiple cancers and represents significant value in distinguishing among cancer samples (AUC = 0.91) and predicting the prognoses (p < 0.05) of patients with different cancers. In contrast, decreased ITGB4 mRNA expression was determined in SCLC (SMD < 0), and this finding was further confirmed at protein levels using in-house specimens (p < 0.05). This decrease in expression may be attributed to the regulatory role of estrogen receptor 1. ITGB4 may participate in the progression of SCLC by affecting several signaling pathways (e.g., tumor necrosis factor signaling pathway) and a series of immune cells (e.g., dendritic cells) (p < 0.05). The gene may serve as a potential marker for predicting the disease status (AUC = 0.97) and prognoses (p < 0.05) of patients with SCLC. Collectively, ITGB4 was identified as an identification and prognosis marker associated with immune infiltration in SCLC.

3.
PeerJ ; 11: e15598, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601247

RESUMEN

Background: Worldwide, lung squamous cell carcinoma (LUSC) has wreaked havoc on humanity. Matrix metallopeptidase 12 (MMP12) plays an essential role in a variety of cancers. This study aimed to reveal the expression, clinical significance, and potential molecular mechanisms of MMP12 in LUSC. Methods: There were 2,738 messenger RNA (mRNA) samples from several multicenter databases used to detect MMP12 expression in LUSC, and 125 tissue samples were validated by immunohistochemistry (IHC) experiments. Receiver operator characteristic (ROC) curves, Kaplan-Meier curves, and univariate and multivariate Cox regression analyses were used to assess the clinical value of MMP12 in LUSC. The potential molecular mechanisms of MMP12 were explored by gene enrichment analysis and immune correlation analysis. Furthermore, single-cell sequencing was used to determine the distribution of MMP12 in multiple tumor microenvironment cells. Results: MMP12 was significantly overexpressed at the mRNA level (p < 0.05, SMD = 3.13, 95% CI [2.51-3.75]), which was verified at the protein level (p < 0.001) by internal IHC experiments. MMP12 expression could be used to differentiate LUSC samples from normal samples, and overexpression of MMP12 itself implied a worse clinical prognosis and higher levels of immune cell infiltration in LUSC patients. MMP12 was involved in cancer development and progression through two immune-related signaling pathways. The high expression of MMP12 in LUSC might act as an antigen-presenting cell-associated tumor neoantigen and activate the body's immune response. Conclusions: MMP12 expression is upregulated in LUSC and high expression of MMP12 serves as a risk factor for LUSC patients. MMP12 may be involved in cancer development by participating in immune-related signaling pathways and elevating the level of immune cell infiltration.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Células Escamosas/genética , Pulmón , Neoplasias Pulmonares/diagnóstico , Metaloproteinasa 12 de la Matriz/genética , Pronóstico , Microambiente Tumoral/genética
4.
BMC Pulm Med ; 23(1): 166, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173675

RESUMEN

BACKGROUND: Centrosomal protein 55 (CEP55) plays a significant role in specific cancers. However, comprehensive research on CEP55 is lacking in pan-cancer. METHODS: In-house and multi-center samples (n = 15,823) were used to analyze CEP55 in 33 cancers. The variance of CEP55 expression levels among tumor and control groups was evaluated by the Wilcoxon rank-sum test and standardized mean difference (SMD). The clinical value of CEP55 in cancers was assessed using receiver operating characteristic (ROC) curves, Cox regression analysis, and Kaplan-Meier curves. The correlations between CEP55 expression and the immune microenvironment were explored using Spearman's correlation coefficient. RESULTS: The data of clustered regularly interspaced short palindromic repeats confirmed that CEP55 was essential for the survival of cancer cells in multiple cancer types. Elevated CEP55 mRNA expression was observed in 20 cancers, including glioblastoma multiforme (p < 0.05). CEP55 mRNA expression made it feasible to distinguish 21 cancer types between cancer specimens and their control samples (AUC = 0.97), indicating the potential of CEP55 for predicting cancer status. Overexpression of CEP55 was correlated with the prognosis of cancer individuals for 18 cancer types, exhibiting its prognostic value. CEP55 expression was relevant to tumor mutation burden, microsatellite instability, neoantigen counts, and the immune microenvironment in various cancers (p < 0.05). The expression level and clinical relevance of CEP55 in cancers were verified in lung squamous cell carcinoma using in-house and multi-center samples (SMD = 4.07; AUC > 0.95; p < 0.05). CONCLUSION: CEP55 may be an immune-related predictive and prognostic marker for multiple cancers, including lung squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Humanos , Pronóstico , Carcinoma de Células Escamosas/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ARN Mensajero/genética , Microambiente Tumoral/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Colloids Surf B Biointerfaces ; 226: 113313, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37075522

RESUMEN

Zn2+ and H2S are essential to maintain normal prostate function, and sometimes can evolve into weapons to attack and destroy prostate cancer (PCa) cells. Nevertheless, how to achieve the targeted and effective release of Zn2+ and H2S, and reverse the concentration distribution within PCa tumor cells still highly challenging. Herein, combined with these pathological characteristics of prostate, we proposed a tumor microenvironment (TME) responsive Zn2+-interference and H2S-mediated gas synergistic therapy strategy based on a nanoplatform of tannic acid (TA) modified zinc sulfide nanoparticles (ZnS@TA) for the specific treatment of PCa. Once the constructed pH-responsive ZnS@TA internalized by cancer cells, it would instantaneously decomposed in acidic TME, and explosively release excess Zn2+ and H2S exceeding the cell self-regulation threshold. Meanwhile, the in situ produced Zn2+ and H2S synergistic enhancement of cell apoptosis, which is evidenced to increase levels of Bax and Bax/Bcl-2 ratio, release of Cytochrome c in cancer cells, contributing to inhibit the growth of tumor. Moreover, the TA in cooperation with Zn2+ specifically limits the migration and invasion of PCa cells. Both in vitro and in vivo results demonstrate that the Zn2+-interference in combination with H2S-mediated gas therapy achieves an excellent anti-tumor performance. Overall, this nanotheranostic synergistic therapy provides a promising direction for exploring new strategies for cancer treatment based on specific tumor pathological characteristics, and provides a new vision for promoting practical cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias de la Próstata , Masculino , Humanos , Proteína X Asociada a bcl-2 , Apoptosis , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Zinc/farmacología , Línea Celular Tumoral , Microambiente Tumoral
6.
Crit Care Nurse ; 43(2): 26-35, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37001878

RESUMEN

INTRODUCTION: Prone positioning has been shown to improve ventilation status for patients with severe COVID-19 who are receiving mechanical ventilation. This case report describes the nursing care of a patient with severe COVID-19 who underwent prone ventilation for 72 hours. Relevant nursing management and operational considerations are also discussed. CLINICAL FINDINGS: An 83-year-old woman was admitted to the hospital with fatigue, dizziness, and positive tests for SARS-CoV-2 on nasopharyngeal swab specimens. The patient was intubated. DIAGNOSIS: The patient's positive tests for SARS-CoV-2, chest computed tomography findings, and clinical symptoms were consistent with a diagnosis of severe COVID-19. INTERVENTIONS: When the patient's condition did not improve with mechanical ventilation and intermittent prone positioning, she was placed in the prone position for 72 hours. She received sedation, analgesics, anti-infective medications, and enteral nutrition support in the intensive care unit. Nurses performed dynamic monitoring based on blood gas analysis results to guide lung rehabilitation. OUTCOMES: The patient was weaned from the ventilator on day 20 and successfully discharged home on day 28 of hospitalization. CONCLUSION: During prolonged prone ventilation of a patient with severe COVID-19, nursing strategies included airway management, early lung rehabilitation training guided by pulmonary ultrasonography, skin care, hierarchical management of nurses, hemodynamic support, and enteral nutrition. This report may assist critical care nurses caring for similar patients.


Asunto(s)
COVID-19 , Atención de Enfermería , Femenino , Humanos , Anciano de 80 o más Años , Respiración Artificial/métodos , SARS-CoV-2 , Unidades de Cuidados Intensivos , Posición Prona
7.
Technol Health Care ; 31(5): 1691-1707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970920

RESUMEN

BACKGROUND: At present, studies on MircoRNA-22-3p (miR-22-3p) in lung adenocarcinoma use a single method, lack multi-center validation and multi-method validation, and there is no big data concept to predict and validate target genes. OBJECTIVE: To investigate the expression, potential targets and clinicopathological significance of miR-22-3p in lung adenocarcinoma (LUAD) tissues. METHODS: LUAD formalin-fixed paraffin-embedded (FFPE) tumors and adjacent normal lung tissues were collected for real-time quantitative polymerase chain reaction (RT-qPCR). Collect miR-22-3p in LUAD and non-cancer lung tissue from high-throughput datasets, standardized mean difference (SMD) and area under the curve (AUC) of the comprehensive receiver operating curve (summary receiver operating characteristic cure, sROC curve) were calculated. Cell function experiments on A549 cells transfected with LV-hsa-miR-22-3p. Target genes were predicted by the miRwalk2.0 website and the resulting target genes were subjected to Gene Ontology (GO) pathway enrichment analysis and constructed to protein-protein interaction network. Finally, the protein expression level of the key gene TP53 was validated by searching The Human Protein Atlas (THPA) database to incorporate TP53 immunohistochemical results in LUAD. RESULTS: RT-qPCR result from 41 pairs of LUAD and adjacent lung tissues showed that miR-22-3p was downregulated in LUAD (AUC = 0.6597, p= 0.0128). Globally, a total of 838 LUADs and 494 non-cancerous lung tissues were included, and were finally combined into 14 platforms. Compared with noncancerous tissue, miR-22-3p expression level was significantly reduced in LUAD tissue (SMD =-0.32, AUC = 0.72l); cell function experiments showed that miR-22-3p has inhibitory effects on cell proliferation, migration and invasion, and has promotion effect on apoptosis. Moreover, target genes prediction, GO pathway enrichment analysis and PPI network exhibited TP53 as a key gene of target gene of miR-22-3p; at last, a total of 114 high-throughput datasets were included, including 3897 LUADs and 2993 non-cancerous lung tissues, and were finally combined into 37 platforms. Compared with noncancerous tissue, TP53 expression level was significantly increased in LUAD (SMD = 0.39, p< 0.01) and it was verified by the protein expression data from THPA. CONCLUSION: Overexpression of miR-22-3p may inhibit LUAD cell proliferation, migration and invasion through TP53, and promote cell apoptosis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Relevancia Clínica , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pulmón/patología , Proliferación Celular/genética , Proteína p53 Supresora de Tumor/genética
8.
Dig Dis Sci ; 68(5): 1894-1912, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36459296

RESUMEN

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is a malignant tumor responsible for a heavy disease burden. Previously, only one pan-cancer study of Transmembrane channel-like protein 5 (TMC5) showed that TMC5 was highly expressed in PAAD, but the results lacked comprehensive verification, and the mechanism of TMC5 in PAAD was still unclear. METHODS: For exploring the expression and clinical value of TMC5 in PAAD better, we adopted a comprehensive evaluation method, using internal immunohistochemistry (IHC) data combined with microarray and RNA-sequencing data collected from public databases. The single cell RNA-sequencing (scRNA-seq) data were exploited to explore the TMC5 expression in cell populations and intercellular communication. The potential mechanism of TMC5 in PAAD was analyzed from the aspects of immune infiltration, transcriptional regulation, function and pathway enrichment. RESULTS: Our IHC data includes 148 PAAD samples and 19 non-PAAD samples, along with the available microarray and RNA-sequencing data (1166 PAAD samples, 704 non-PAAD samples). The comprehensive evaluation results showed that TMC5 was evidently up-regulated in PAAD (SMD = 1.17). Further analysis showed that TMC5 was over-expressed in cancerous epithelial cells. Furthermore, TMC5 was up-regulated in more advanced tumor T and N stages. Interestingly, we found that STAT3 as an immune marker of Th17 cells was not only positively correlated with TMC5 and up-regulated in PAAD tissues, but also the major predicted TMC5 transcription regulator. Moreover, STAT3 was involved in cancer pathway of PAAD. CONCLUSION: Up-regulated TMC5 indicates advanced tumor stage in PAAD patients, and its role in promoting PAAD development may be regulated by STAT3.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Comunicación Celular , Costo de Enfermedad , Pronóstico , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas
9.
J Genet Genomics ; 50(5): 330-340, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36414223

RESUMEN

Multiple primary lung cancer (MPLC) is an increasingly prevalent subtype of lung cancer. According to recent genomic studies, the different lesions of a single MPLC patient exhibit functional similarities that may reflect evolutionary convergence. We perform whole-exome sequencing for a unique cohort of MPLC patients with multiple samples from each lesion found. Using our own and other relevant public data, evolutionary tree reconstruction reveals that cancer driver gene mutations occurred at the early trunk, indicating evolutionary contingency rather than adaptive convergence. Additionally, tumors from the same MPLC patient are as genetically diverse as those from different patients, while within-tumor genetic heterogeneity is significantly lower. Furthermore, the aberrant molecular functions enriched in mutated genes for a sample show a strong overlap with other samples from the same tumor, but not with samples from other tumors or other patients. Overall, there is no evidence of adaptive convergence during the evolution of MPLC. Most importantly, the similar between-tumor diversity and between-patient diversity suggest that personalized therapies may not adequately account for the genetic diversity among different tumors in an MPLC patient. To fully exploit the strategic value of precision medicine, targeted therapies should be designed and delivered on a per-lesion basis.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Primarias Múltiples , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/patología , Neoplasias Primarias Múltiples/cirugía , Mutación
10.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499045

RESUMEN

FASN plays a critical role in lipid metabolism, which is involved in regulating ovarian follicular development. However, the molecular mechanisms of how FASN regulate the function of ovarian follicular cells still remain elusive. In this study, by overexpression or interference of FASN in pre-hierarchical follicle granulosa cells (phGCs) and hierarchical follicle granulosa cells (hGCs), we analyzed their effects on the granulosa cell transcriptome and metabolome profiles using RNA-Seq and LC-MS/MS, respectively. The results showed that overexpression of FASN promoted proinflammatory factors expression by activating TLR3/IRF7 and TLR3/NF-κB pathways in phGCs, but only by activating TLR3/IRF7 pathways in hGCs. Then, necroptosis and apoptosis were triggered through the JAK/STAT1 pathway (induced by inflammatory factors) and BAK/caspase-7 pathway, respectively. The combined analysis of the metabolome and transcriptome revealed that FASN affected the demand of GCs for 5-hydroxytryptamine (5-HT) by activating the neuroactive ligand-receptor interaction pathway in two categorized GCs and only altering the metabolic pathway of tryptophan in phGCs, and ultimately participated in regulating the physiological function of geese GCs. Taken together, this study showed that the mechanisms of FASN regulating the physiological function of geese phGCs and hGCs were similar, but they also had some different characteristics.


Asunto(s)
Gansos , Espectrometría de Masas en Tándem , Animales , Femenino , Gansos/genética , Gansos/metabolismo , Cromatografía Liquida , Células Cultivadas , Células de la Granulosa/metabolismo , Transcriptoma
11.
Interact Cardiovasc Thorac Surg ; 34(5): 799-807, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35015846

RESUMEN

OBJECTIVES: Uniportal video-assisted thoracoscopic surgery (UniVATS) is widely used as a minimally invasive thoracic operation. The goal of our study was to analyse the effect of long-term experience with the UniVATS lobectomy on the learning curve. METHODS: The learning curves were quantitatively evaluated by the unadjusted cumulative sum, and they were segmented using joinpoint linear regression analysis. The variables were compared between subgroups using trend analysis, and linear regression analysis was applied to correlate clinical characteristics at different stages of the learning curve with the duration of the operation. RESULTS: The learning curve for the UniVATS lobectomy can be divided into 3 phases of proficiency at ∼200-300 procedures, with a fourth phase as the number of procedures increases. The 1st-52nd, 52nd-156th, 156th-244th and 244th-538th procedures comprised the preliminary learning stage, preliminary proficiency stage, proficiency stage and advanced proficiency stage, respectively. Surgical outcomes and their variability between stages improved with increasing case numbers, with the most significant addition of an auxiliary operating port and conversions. In multivariable analysis, as stages progressed, influences other than surgical experience increased the operative time, with male and extensive pleural adhesions in the preliminary proficiency stage; male and incomplete pulmonary fissures in the proficiency stage; and male, extensive pleural adhesions and incomplete pulmonary fissures in the advanced proficiency stage. CONCLUSIONS: As the number of procedures increases, there may be 4 different proficiency stages in the UniVATS lobectomy learning curve. The surgeon enters the fourth stage at approximately the 244th procedure. Moreover, at stage 4, the perioperative indicators tend to stabilize, and influences other than surgical experience become more significant.


Asunto(s)
Curva de Aprendizaje , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/cirugía , Masculino , Neumonectomía/efectos adversos , Neumonectomía/métodos , Estudios Retrospectivos , Cirugía Torácica Asistida por Video/efectos adversos , Cirugía Torácica Asistida por Video/métodos
12.
Cancer Biother Radiopharm ; 37(6): 466-479, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34582697

RESUMEN

Background: The treatment and survival rate of patients with metastatic prostate cancer (MPCa) remain unsatisfactory. Herein, the authors investigated the clinical value and potential mechanisms of cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) in MPCa to identify novel targets for clinical diagnosis and treatment. Materials and Methods: mRNA microarray and RNA-Seq (n = 1246 samples) data were utilized to estimate CELSR3 expression and to assess its differentiation ability in MPCa. Similar analyses were performed with miRNA-221-3p. Immunohistochemistry performed on clinical samples were used to evaluate the protein expression level of CELSR3 in MPCa. Based on CELSR3 differentially coexpressed genes (DCEGs), enrichment analysis was performed to investigate potential mechanisms of CELSR3 in MPCa. Results: The pooled standard mean difference (SMD) for CELSR3 was 0.80, demonstrating that CELSR3 expression was higher in MPCa than in localized prostate cancer (LPCa). CELSR3 showed moderate potential to distinguish MPCa from LPCa. CELSR3 protein expression was found to be markedly upregulated in MPCa than in LPCa tissues. The authors screened 894 CELSR3 DCEGs, which were notably enriched in the focal adhesion pathway. miRNA-221-3p showed a significantly negative correlation with CELSR3 in MPCa. Besides, miRNA-221-3p expression was downregulated in MPCa than in LPCa (SMD = -1.04), and miRNA-221-3p was moderately capable of distinguishing MPCa from LPCa. Conclusions: CELSR3 seems to play a pivotal role in MPCa by affecting the focal adhesion pathway and/or being targeted by miRNA-221-3p.


Asunto(s)
Cadherinas , MicroARNs , Neoplasias de la Próstata , Receptores de Superficie Celular , Cadherinas/genética , Minería de Datos , Humanos , Inmunohistoquímica , Masculino , MicroARNs/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores de Superficie Celular/genética
13.
Acta Chim Slov ; 68(3): 693-699, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34897534

RESUMEN

By changing the anions of zinc salts, three different zinc(II) complexes, [Zn2(HL)2(NCS)4]·2CH3OH (1), [Zn2L(µ2-η1:η1-CH3COO)2(NCS)] (2) and [Zn(HL)I2]·CH3OH (3), where L = 5-bromo-2-((2-(diethylamino)ethylimino)methyl)phenolate, HL = 5-bromo-2-((2-(diethylammonio)ethylimino)methyl)phenolate, have been synthesized and characterized by IR and UV-Vis spectroscopy, as well as single-crystal X-ray diffraction. X-ray analysis indicates that the Zn atoms in the complexes are in trigonal bipyramidal, square pyramidal and tetrahedral coordination. The anions of the zinc salts lead to the formation of different structures of the complexes. Antibacterial activity of the complexes against Staphylococcus aureus, Escherichia coli, Klebsielle pneumoniae and Candida albicans strains was studied.

14.
Int J Biol Sci ; 17(9): 2223-2239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239351

RESUMEN

Overexpression of pyrroline-5-carboxylate reductase 1 (PYCR1) has been associated with the development of certain cancers; however, no studies have specifically examined the role of PYCR1 in hepatocellular carcinoma (HCC). Based on The Cancer Genome Atlas expression array and meta-analysis conducted using the Gene Expression Omnibus database, we determined that PYCR1 was upregulated in HCC compared to adjacent nontumor tissues (P < 0.05). These data were verified using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry analysis. Additionally, patients with low PYCR1 expression showed a higher overall survival rate than patients with high PYCR1 expression. Furthermore, PYCR1 overexpression was associated with the female sex, higher levels of alpha-fetoprotein, advanced clinical stages (III and IV), and a younger age (< 45 years old). Silencing of PYCR1 inhibited cell proliferation, invasive migration, epithelial-mesenchymal transition, and metastatic properties in HCC in vitro and in vivo. Using RNA sequencing and bioinformatics tools for data-dependent network analysis, we found binary relationships among PYCR1 and its interacting proteins in defined pathway modules. These findings indicated that PYCR1 played a multifunctional role in coordinating a variety of biological pathways involved in cell communication, cell proliferation and growth, cell migration, a mitogen-activated protein kinase cascade, ion binding, etc. The structural characteristics of key pathway components and PYCR1-interacting proteins were evaluated by molecular docking, and hotspot analysis showed that better affinities between PYCR1 and its interacting molecules were associated with the presence of arginine in the binding site. Finally, a candidate regulatory microRNA, miR-2355-5p, for PYCR1 mRNA was discovered in HCC. Overall, our study suggests that PYCR1 plays a vital role in HCC pathogenesis and may potentially serve as a molecular target for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Pirrolina Carboxilato Reductasas/metabolismo , Adulto , Animales , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Pirrolina Carboxilato Reductasas/genética , Ensayos Antitumor por Modelo de Xenoinjerto , delta-1-Pirrolina-5-Carboxilato Reductasa
15.
J Trace Elem Med Biol ; 68: 126819, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34293650

RESUMEN

BACKGROUND: The National Institutes of Health (NIH) category IV prostatitis is a painless prostate gland inflammation, just as its name implies, this type of prostatitis is related with inflammation of the prostate, but most men are not conscious of it. However, category IV prostatitis is fairly common in general populations and reported having indirect relationships with prostate cancer. METHOD: We analyzed the concentration of zinc (Zn), copper (Cu), calcium (Ca) and magnesium (Mg) in expressed prostatic secretion (EPS) and serum of patients with category IV prostatitis and healthy controls, investigating the diagnostic potential of different metals in category IV prostatitis using a flame atomic absorption spectrometer (FAAS). RESULTS: Metal concentration combined clinical characteristics analysis suggested that average level of Zn, Ca, Mg were significantly lower in the EPS of patients with category IV prostatitis (P-value< 0.000), while Cu level raised obviously (P-value< 0.000). And in the serum, mean concentrations of Ca was also found to increase significantly in the patients with category IV prostatitis compared to healthy controls. Moreover, the correlation analysis indicated that age showed a positive correlation with EPS Zn, Ca, Mg concentration (P-value< 0.05), while albumin correlates with EPS Zn, Ca, Mg concentration reversely (P-value< 0.05) in patients with category IV prostatitis. CONCLUSION: Our report revealed that determination of the metal elements zinc, copper, calcium and magnesium in the serum and EPS could be a new and promising strategy for the rapid diagnosis of category IV prostatitis.


Asunto(s)
Prostatitis , Oligoelementos , Calcio , Cobre , Humanos , Inflamación , Magnesio , Masculino , Prostatitis/diagnóstico , Zinc
16.
Poult Sci ; 100(7): 101112, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34116350

RESUMEN

As the largest single bone, avian sterna are very different from those of mammals in terms of morphology and functions. Moreover, years of artificial selection in poultry led to incomplete sternal ossification at slaughter age, which may cause diseases, sternal injury, and restriction to breast muscle growth. However, in living birds, studies have rarely described the ossification pattern and underlying mechanisms of the sterna. Here, we examined the pattern (timeline, ossification centers, ossification directions, weekly changes of different parts, quantified differences in ossification degree among sexes and parts) and developmental changes (histological structure, gene expression) of postnatal duck sternal ossification. Direct observation and alcian blue and alizarin red staining of whole sterna samples revealed that, duck sterna mainly ossified during 5 to 9 wk old with five ossification centers. These centers and their ossification directions were different from and more complex than the previously studied birds. The weekly changes of sterna and the quantitative analysis of ossification-related traits showed that ossifications in the three parts of duck sterna (sternum body, keel, posterolateral processes) were mutually independent in space and time, meanwhile, the male duck sterna were more late-maturing than the female. The results of hematoxylin-eosin, alcian blue, and toluidine blue stainings and the expression levels of COL2A1, COL10A1, COL1A2, and CTSK together supported that, duck sternal ossification was highly similar to typical endochondral ossification. Furthermore, continuously high expression of MMP13 and SPARC and their significant (P < 0.05) co-expression with COL2A1, COL10A1, COL1A2, and CTSK suggested the importance of MMP13 and SPARC in duck sternal ossification. Taken together, our results may be helpful for the understanding of avian sternal ossification and the improvement of the performance and welfare of poultry from a new perspective.


Asunto(s)
Patos , Osteogénesis , Animales , Pollos , Femenino , Expresión Génica , Masculino , Esternón
17.
Bioengineered ; 12(1): 1627-1641, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33949293

RESUMEN

Hepatocellular carcinoma (HCC) is a leading cause of mortality in cancer patients, but the association between miR-125b-2-3p and the onset and prognosis of HCC has not been reported in previous studies; thus, the clinicopathological implications of miR-125b-2-3p in HCC require elaboration. To examine the expression of miR-125b-2-3p in HCC, both in-house RT-qPCR and public datasets were used to calculate the standard mean difference (SMD) and the summary receiver operating characteristic (sROC). MiR-125b-2-3p was markedly lower in HCC than in non-tumor tissue as assessed by the in-house RT-qPCR which was confirmed by the integrative analysis showing the SMD being -0.69 and the area under the curve (AUC) being 0.84 based on 1,233 cases of HCC and 630 cases of non-HCC controls. To gain a overview of the clinical value of miR-125b-2-3p in HCC, all possible datasets were integrated, and lower miR-125b-2-3p levels could lead to poorer differentiation and a more advanced clinical stage of HCC. The hazard ratio (HR) of miR-125b-2-3p was also calculated using a Cox proportional hazards model, and the miR-125b-2-3p level could act as an protective indication for the survival with the HR being 0.74 based on 586 cases of HCC. Furthermore, the effect of nitidine chloride (NC), a natural bioactive phytochemical alkaloid, on the regulation of miR-125b-2-3p and its potential targets was also investigated. The miR-125b-2-3p level was increased after NC treatment, while the expression of its potential target PRKCA was reduced. Above all, a low-expressed level of miR-125b-2-3p plays a tumor suppressive role in HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , MicroARNs/genética , Carcinoma Hepatocelular/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Masculino , MicroARNs/metabolismo , Pronóstico , Curva ROC , Factores de Riesgo
18.
Reprod Domest Anim ; 56(1): 58-73, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33103290

RESUMEN

Theca cells (TCs) play an important role in follicular development, which cannot be separated from granulosa cells (GCs). However, compared with mammals, the TCs and the effects of GCs on TCs at different follicular development stages (FDSs) have specific characteristics in avian species, but none of them have been clearly defined. In this study, we established an in vitro co-culture (with GC at the corresponding stage) model of goose TCs at different FDSs (pre-hierarchical, hierarchical and F1) by using a transwell system. The properties of TCs in co-culture at the three FDSs, including cell morphology, activity and intracellular lipid content, as well as the expression of key genes involved in de novo lipogenesis, steroidogenesis, proliferation and apoptosis, were examined and defined. We further compared the mono-culture and co-culture groups. After co-culture, the activity of TCs showed significant (p < .01) increases in all stages; moreover, in pre-hierarchical TCs, the expression levels of FAS, SREBP, 3ß-HSD and CCND1 were promoted, and PPARγ, CYP19, BCL2 and CAS3 were inhibited (p < .05); in the hierarchical TCs, the expression levels of PPARγ, FAS, CYP19, CCND1 and BCL2 were promoted, and SREBP, STAR, 3ß-HSD and CAS3 were inhibited (p < .05), whereas in the F1 TCs, the expression levels of PPARγ, FAS, 3ß-HSD, CYP19 and CCND1 were promoted, and STAR and CAS3 were inhibited (p < .05). These results suggested that GCs at the three FDSs have dynamic and complex influences on the physiological characteristics of TCs, and the influences on TCs at the three FDSs were varied.


Asunto(s)
Células de la Granulosa/metabolismo , Folículo Ovárico/citología , Células Tecales/metabolismo , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo/veterinaria , Femenino , Gansos , Regulación de la Expresión Génica , Lipogénesis , Esteroides/biosíntesis
19.
Biosci Rep ; 40(8)2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32706022

RESUMEN

Granulosa cells (GCs) play a critical role in follicular development, which cannot be separated from the assistance of theca cells (TCs). In the present study, we used a transwell system to develop three stages of goose GCs in vitro mono-culture and co-culture models, and we analyzed the morphology, activity, intracellular lipid content and the expression of core genes involved in de novo lipogenesis (DNL), steroidogenesis, proliferation and apoptosis of the GCs. In the co-culture group, the activity of all three stages of GCs showed significant (P<0.01) changes, and they had a strong (P<0.01) correlation with culture time; further, the intracellular lipid deposition of hierarchical GCs was significantly different (P<0.01) between the two methods. Moreover, after co-culture, in pre-hierarchical GCs, the expression of SREBP, CYP11 and 3ßHSD was promoted (P<0.01). In hierarchical GCs, the expression of ACC, SREBP, STAR, CYP11, 3ßHSD and CCND1 was promoted at 48 h, but they were inhibited (P<0.05) at 96 h. In F1 GCs, the expression of ACC, FAS, SREBP, CYP11, BCL2 and CAS3 was inhibited (P<0.01). The results indicate that goose TCs had complex and time-dependent effects on the biological function of GCs at each corresponding stage, and the effects were distinct in the different stages. In addition, DNL, steroidogenesis, proliferation and apoptosis in hierarchical and F1 GCs might have some synergistic relationships in the effects of TCs on GCs. Furthermore, we speculated that TCs might play an important role in the differentiation and maturation of GCs during follicular development.


Asunto(s)
Comunicación Celular , Células de la Granulosa/metabolismo , Folículo Ovárico/citología , Células Tecales/metabolismo , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Femenino , Gansos , Regulación del Desarrollo de la Expresión Génica , Hormonas Esteroides Gonadales/biosíntesis , Lipogénesis , Transducción de Señal , Factores de Tiempo
20.
Front Physiol ; 11: 600, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676035

RESUMEN

Lipid metabolism participates in regulating the functions of granulosa cells (GCs), which is important for follicular development. In this experiment, goose GCs from pre-hierarchical follicles and hierarchical follicles were selected to be the model for studying the putative regulatory role of lipid metabolism in apoptosis and steroidogenesis, through overexpression and interference with fatty acid synthase (FASN). When FASN was overexpressed, the lipid accumulation was increased in hierarchical GCs (hGCs) and it was increased in the two categorized GCs when FASN was interfered. In addition, the apoptosis of the two categorized GCs was increased when FASN was overexpressed, and their progesterone production was decreased when FASN was interfered. The results of qRT-PCR showed that, when FASN was overexpressed, the expression level of CYP11A1 was decreased in pre-hierarchical GCs (phGCs), while the expression levels of SCD1, DGAT2, APOB, and StAR were increased in hGCs. When FASN was interfered, the expression levels of CPT-1, DGAT2, and StAR were decreased whereas the expression level of CYP11A1 was increased in phGCs, and the expression levels of CPT-1, SCD1, and StAR were decreased in hGCs. These results not only identify the different effects of manipulated FASN expression on lipid metabolism of goose phGCs and hGCs but also demonstrate that FASN-mediated lipid metabolism plays an important role in regulating apoptosis and steroidogenesis of in vitro cultured goose GCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...