Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(5): 3287-3306, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38431835

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.


Asunto(s)
Enfermedades Respiratorias , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Potencial de Receptor Transitorio/metabolismo , Canal Catiónico TRPA1 , Aldehído Oxidasa/metabolismo , Oxidorreductasas/metabolismo , Proteínas del Citoesqueleto/metabolismo
2.
Elife ; 122023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555828

RESUMEN

Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.


Asunto(s)
Quinasas Quinasa Quinasa PAM , Tauopatías , Animales , Humanos , Ratones , Encéfalo/patología , Células Cultivadas , Espinas Dendríticas/patología , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones Noqueados , Microglía/metabolismo , Enfermedades Neuroinflamatorias/patología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/fisiopatología
3.
Nature ; 611(7934): 148-154, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36171287

RESUMEN

Recent single-cell studies of cancer in both mice and humans have identified the emergence of a myofibroblast population specifically marked by the highly restricted leucine-rich-repeat-containing protein 15 (LRRC15)1-3. However, the molecular signals that underlie the development of LRRC15+ cancer-associated fibroblasts (CAFs) and their direct impact on anti-tumour immunity are uncharacterized. Here in mouse models of pancreatic cancer, we provide in vivo genetic evidence that TGFß receptor type 2 signalling in healthy dermatopontin+ universal fibroblasts is essential for the development of cancer-associated LRRC15+ myofibroblasts. This axis also predominantly drives fibroblast lineage diversity in human cancers. Using newly developed Lrrc15-diphtheria toxin receptor knock-in mice to selectively deplete LRRC15+ CAFs, we show that depletion of this population markedly reduces the total tumour fibroblast content. Moreover, the CAF composition is recalibrated towards universal fibroblasts. This relieves direct suppression of tumour-infiltrating CD8+ T cells to enhance their effector function and augments tumour regression in response to anti-PDL1 immune checkpoint blockade. Collectively, these findings demonstrate that TGFß-dependent LRRC15+ CAFs dictate the tumour-fibroblast setpoint to promote tumour growth. These cells also directly suppress CD8+ T cell function and limit responsiveness to checkpoint blockade. Development of treatments that restore the homeostatic fibroblast setpoint by reducing the population of pro-disease LRRC15+ myofibroblasts may improve patient survival and response to immunotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Proteínas de la Membrana , Miofibroblastos , Neoplasias Pancreáticas , Células del Estroma , Animales , Humanos , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Linfocitos T CD8-positivos/inmunología , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Receptores de Factores de Crecimiento Transformadores beta , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Antígeno B7-H1
4.
Nat Aging ; 2(9): 837-850, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-37118504

RESUMEN

Microglia and complement can mediate neurodegeneration in Alzheimer's disease (AD). By integrative multi-omics analysis, here we show that astrocytic and microglial proteins are increased in TauP301S synapse fractions with age and in a C1q-dependent manner. In addition to microglia, we identified that astrocytes contribute substantially to synapse elimination in TauP301S hippocampi. Notably, we found relatively more excitatory synapse marker proteins in astrocytic lysosomes, whereas microglial lysosomes contained more inhibitory synapse material. C1q deletion reduced astrocyte-synapse association and decreased astrocytic and microglial synapses engulfment in TauP301S mice and rescued synapse density. Finally, in an AD mouse model that combines ß-amyloid and Tau pathologies, deletion of the AD risk gene Trem2 impaired microglial phagocytosis of synapses, whereas astrocytes engulfed more inhibitory synapses around plaques. Together, our data reveal that astrocytes contact and eliminate synapses in a C1q-dependent manner and thereby contribute to pathological synapse loss and that astrocytic phagocytosis can compensate for microglial dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/genética , Complemento C1q/genética , Microglía/metabolismo , Astrocitos/metabolismo , Sinapsis/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
5.
Neuron ; 109(8): 1283-1301.e6, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33675684

RESUMEN

Loss-of-function TREM2 mutations strongly increase Alzheimer's disease (AD) risk. Trem2 deletion has revealed protective Trem2 functions in preclinical models of ß-amyloidosis, a prominent feature of pre-diagnosis AD stages. How TREM2 influences later AD stages characterized by tau-mediated neurodegeneration is unclear. To understand Trem2 function in the context of both ß-amyloid and tau pathologies, we examined Trem2 deficiency in the pR5-183 mouse model expressing mutant tau alone or in TauPS2APP mice, in which ß-amyloid pathology exacerbates tau pathology and neurodegeneration. Single-cell RNA sequencing in these models revealed robust disease-associated microglia (DAM) activation in TauPS2APP mice that was amyloid-dependent and Trem2-dependent. In the presence of ß-amyloid pathology, Trem2 deletion further exacerbated tau accumulation and spreading and promoted brain atrophy. Without ß-amyloid pathology, Trem2 deletion did not affect these processes. Therefore, TREM2 may slow AD progression and reduce tau-driven neurodegeneration by restricting the degree to which ß-amyloid facilitates the spreading of pathogenic tau.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Atrofia/genética , Atrofia/metabolismo , Atrofia/patología , Encéfalo/patología , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/genética , Ratones , Ratones Transgénicos , Receptores Inmunológicos/genética , Proteínas tau/genética
6.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33620419

RESUMEN

Despite the development of effective therapies, a substantial proportion of asthmatics continue to have uncontrolled symptoms, airflow limitation, and exacerbations. Transient receptor potential cation channel member A1 (TRPA1) agonists are elevated in human asthmatic airways, and in rodents, TRPA1 is involved in the induction of airway inflammation and hyperreactivity. Here, the discovery and early clinical development of GDC-0334, a highly potent, selective, and orally bioavailable TRPA1 antagonist, is described. GDC-0334 inhibited TRPA1 function on airway smooth muscle and sensory neurons, decreasing edema, dermal blood flow (DBF), cough, and allergic airway inflammation in several preclinical species. In a healthy volunteer Phase 1 study, treatment with GDC-0334 reduced TRPA1 agonist-induced DBF, pain, and itch, demonstrating GDC-0334 target engagement in humans. These data provide therapeutic rationale for evaluating TRPA1 inhibition as a clinical therapy for asthma.


Asunto(s)
Asma/tratamiento farmacológico , Inflamación Neurogénica/tratamiento farmacológico , Dolor/tratamiento farmacológico , Prurito/tratamiento farmacológico , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Canal Catiónico TRPA1/antagonistas & inhibidores , Adolescente , Adulto , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Perros , Método Doble Ciego , Femenino , Cobayas , Voluntarios Sanos , Humanos , Isotiocianatos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Dolor/inducido químicamente , Prurito/inducido químicamente , Ratas , Ratas Sprague-Dawley , Canal Catiónico TRPA1/deficiencia , Resultado del Tratamiento , Adulto Joven
7.
Cell ; 182(5): 1156-1169.e12, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795415

RESUMEN

Dysregulated microglia are intimately involved in neurodegeneration, including Alzheimer's disease (AD) pathogenesis, but the mechanisms controlling pathogenic microglial gene expression remain poorly understood. The transcription factor CCAAT/enhancer binding protein beta (c/EBPß) regulates pro-inflammatory genes in microglia and is upregulated in AD. We show expression of c/EBPß in microglia is regulated post-translationally by the ubiquitin ligase COP1 (also called RFWD2). In the absence of COP1, c/EBPß accumulates rapidly and drives a potent pro-inflammatory and neurodegeneration-related gene program, evidenced by increased neurotoxicity in microglia-neuronal co-cultures. Antibody blocking studies reveal that neurotoxicity is almost entirely attributable to complement. Remarkably, loss of a single allele of Cebpb prevented the pro-inflammatory phenotype. COP1-deficient microglia markedly accelerated tau-mediated neurodegeneration in a mouse model where activated microglia play a deleterious role. Thus, COP1 is an important suppressor of pathogenic c/EBPß-dependent gene expression programs in microglia.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Ligasas/metabolismo , Microglía/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/genética , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Técnicas de Cocultivo/métodos , Femenino , Expresión Génica/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
8.
Front Immunol ; 10: 2019, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552020

RESUMEN

Colony-stimulating factor 1 (CSF1) and interleukin 34 (IL34) signal via the CSF1 receptor to regulate macrophage differentiation. Studies in IL34- or CSF1-deficient mice have revealed that IL34 function is limited to the central nervous system and skin during development. However, the roles of IL34 and CSF1 at homeostasis or in the context of inflammatory diseases or cancer in wild-type mice have not been clarified in vivo. By neutralizing CSF1 and/or IL34 in adult mice, we identified that they play important roles in macrophage differentiation, specifically in steady-state microglia, Langerhans cells, and kidney macrophages. In several inflammatory models, neutralization of both CSF1 and IL34 contributed to maximal disease protection. However, in a myeloid cell-rich tumor model, CSF1 but not IL34 was required for tumor-associated macrophage accumulation and immune homeostasis. Analysis of human inflammatory conditions reveals IL34 upregulation that may account for the protection requirement of IL34 blockade. Furthermore, evaluation of IL34 and CSF1 blockade treatment during Listeria infection reveals no substantial safety concerns. Thus, IL34 and CSF1 play non-redundant roles in macrophage differentiation, and therapeutic intervention targeting IL34 and/or CSF1 may provide an effective treatment in macrophage-driven immune-pathologies.


Asunto(s)
Homeostasis/inmunología , Inflamación/inmunología , Interleucinas/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Macrófagos/inmunología , Neoplasias/inmunología , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Homeostasis/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos NZB , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
9.
Cell Rep ; 28(8): 2111-2123.e6, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433986

RESUMEN

Complement pathway overactivation can lead to neuronal damage in various neurological diseases. Although Alzheimer's disease (AD) is characterized by ß-amyloid plaques and tau tangles, previous work examining complement has largely focused on amyloidosis models. We find that glial cells show increased expression of classical complement components and the central component C3 in mouse models of amyloidosis (PS2APP) and more extensively tauopathy (TauP301S). Blocking complement function by deleting C3 rescues plaque-associated synapse loss in PS2APP mice and ameliorates neuron loss and brain atrophy in TauP301S mice, improving neurophysiological and behavioral measurements. In addition, C3 protein is elevated in AD patient brains, including at synapses, and levels and processing of C3 are increased in AD patient CSF and correlate with tau. These results demonstrate that complement activation contributes to neurodegeneration caused by tau pathology and suggest that blocking C3 function might be protective in AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Amiloidosis/inmunología , Complemento C3/metabolismo , Degeneración Nerviosa/inmunología , Tauopatías/inmunología , Enfermedad de Alzheimer/genética , Animales , Atrofia , Conducta Animal , Biomarcadores/metabolismo , Encéfalo/patología , Complemento C1q/metabolismo , Complemento C3/líquido cefalorraquídeo , Complemento C3/genética , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Transgénicos , Degeneración Nerviosa/genética , Neuronas/metabolismo , Neuronas/patología , Placa Amiloide/metabolismo , Sinapsis/metabolismo
10.
Neuron ; 100(6): 1322-1336.e7, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30392797

RESUMEN

Synapse loss and Tau pathology are hallmarks of Alzheimer's disease (AD) and other tauopathies, but how Tau pathology causes synapse loss is unclear. We used unbiased proteomic analysis of postsynaptic densities (PSDs) in Tau-P301S transgenic mice to identify Tau-dependent alterations in synapses prior to overt neurodegeneration. Multiple proteins and pathways were altered in Tau-P301S PSDs, including depletion of a set of GTPase-regulatory proteins that leads to actin cytoskeletal defects and loss of dendritic spines. Furthermore, we found striking accumulation of complement C1q in the PSDs of Tau-P301S mice and AD patients. At synapses, C1q decorated perisynaptic membranes, accumulated in correlation with phospho-Tau, and was associated with augmented microglial engulfment of synapses and decline of synapse density. A C1q-blocking antibody inhibited microglial synapse removal in cultured neurons and in Tau-P301S mice, rescuing synapse density. Thus, inhibiting complement-mediated synapse removal by microglia could be a potential therapeutic target for Tau-associated neurodegeneration.


Asunto(s)
Anticuerpos/uso terapéutico , Complemento C1q/inmunología , Sinapsis/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/patología , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Células Cultivadas , Complemento C1q/metabolismo , Complemento C1q/ultraestructura , Embrión de Mamíferos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Densidad Postsináptica/metabolismo , Densidad Postsináptica/patología , Densidad Postsináptica/ultraestructura , Presenilina-2/genética , Presenilina-2/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Proteoma/metabolismo , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Tauopatías/diagnóstico por imagen , Tauopatías/genética , Proteínas tau/genética
11.
Sci Transl Med ; 9(403)2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28814543

RESUMEN

Hallmarks of chronic neurodegenerative disease include progressive synaptic loss and neuronal cell death, yet the cellular pathways that underlie these processes remain largely undefined. We provide evidence that dual leucine zipper kinase (DLK) is an essential regulator of the progressive neurodegeneration that occurs in amyotrophic lateral sclerosis and Alzheimer's disease. We demonstrate that DLK/c-Jun N-terminal kinase signaling was increased in mouse models and human patients with these disorders and that genetic deletion of DLK protected against axon degeneration, neuronal loss, and functional decline in vivo. Furthermore, pharmacological inhibition of DLK activity was sufficient to attenuate the neuronal stress response and to provide functional benefit even in the presence of ongoing disease. These findings demonstrate that pathological activation of DLK is a conserved mechanism that regulates neurodegeneration and suggest that DLK inhibition may be a potential approach to treat multiple neurodegenerative diseases.


Asunto(s)
Leucina Zippers , Quinasas Quinasa Quinasa PAM/metabolismo , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología , Transducción de Señal , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones Transgénicos , Neuroprotección , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Médula Espinal/enzimología , Médula Espinal/patología , Superóxido Dismutasa/metabolismo
12.
PLoS One ; 12(1): e0170639, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28125663

RESUMEN

Diabetic foot ulcers (DFU) are one of the major complications in type II diabetes patients and can result in amputation and morbidity. Although multiple approaches are used clinically to help wound closure, many patients still lack adequate treatment. Here we show that IL-20 subfamily cytokines are upregulated during normal wound healing. While there is a redundant role for each individual cytokine in this subfamily in wound healing, mice deficient in IL-22R, the common receptor chain for IL-20, IL-22, and IL-24, display a significant delay in wound healing. Furthermore, IL-20, IL-22 and IL-24 are all able to promote wound healing in type II diabetic db/db mice. Mechanistically, when compared to other growth factors such as VEGF and PDGF that accelerate wound healing in this model, IL-22 uniquely induced genes involved in reepithelialization, tissue remodeling and innate host defense mechanisms from wounded skin. Interestingly, IL-22 treatment showed superior efficacy compared to PDGF or VEGF in an infectious diabetic wound model. Taken together, our data suggest that IL-20 subfamily cytokines, particularly IL-20, IL-22, and IL-24, might provide therapeutic benefit for patients with DFU.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Pie Diabético/genética , Interleucinas/genética , Receptores de Interleucina/genética , Cicatrización de Heridas/genética , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Pie Diabético/patología , Pie Diabético/terapia , Regulación de la Expresión Génica , Humanos , Fragmentos Fc de Inmunoglobulinas/administración & dosificación , Interleucinas/administración & dosificación , Ligandos , Ratones , Ratones Endogámicos NOD , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/genética , Infección de Heridas/terapia , Interleucina-22
13.
EBioMedicine ; 2(7): 730-43, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26288846

RESUMEN

Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/ßKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/ßKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/ßKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/ßKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/ßKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Anticuerpos Biespecíficos/farmacología , Insulina/farmacología , Proteínas de la Membrana/agonistas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/agonistas , Adiponectina/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Animales , Línea Celular , Metabolismo Energético/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Células HEK293 , Humanos , Proteínas Klotho , Macaca fascicularis , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Obesos , Unión Proteica/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Termogénesis/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
14.
PLoS One ; 8(2): e57322, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23451204

RESUMEN

The phosphaturic hormone Fibroblast Growth Factor 23 (FGF23) controls phosphate homeostasis by regulating renal expression of sodium-dependent phosphate co-transporters and cytochrome P450 enzymes involved in vitamin D catabolism. Multiple FGF Receptors (FGFRs) can act as receptors for FGF23 when bound by the co-receptor Klotho expressed in the renal tubular epithelium. FGFRs also regulate skeletal FGF23 secretion; ectopic FGFR activation is implicated in genetic conditions associated with FGF23 overproduction and hypophosphatemia. The identity of FGFRs that mediate the activity of FGF23 or that regulate skeletal FGF23 secretion remains ill defined. Here we report that pharmacological activation of FGFR1 with monoclonal anti-FGFR1 antibodies (R1MAb) in adult mice is sufficient to cause an elevation in serum FGF23 and mild hypophosphatemia. In cultured rat calvariae osteoblasts, R1MAb induces FGF23 mRNA expression and FGF23 protein secretion into the culture medium. In a cultured kidney epithelial cell line, R1MAb acts as a functional FGF23 mimetic and activates the FGF23 program. siRNA-mediated Fgfr1 knockdown induced the opposite effects. Taken together, our work reveals the central role of FGFR1 in the regulation of FGF23 production and signal transduction, and has implications in the pathogenesis of FGF23-related hypophosphatemic disorders.


Asunto(s)
Factores de Crecimiento de Fibroblastos/biosíntesis , Hipofosfatemia/inmunología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/inmunología , Animales , Secuencia de Bases , Densidad Ósea , Células Cultivadas , Cartilla de ADN , Factor-23 de Crecimiento de Fibroblastos , Masculino , Ratones , Ratones Endogámicos C57BL
15.
J Invest Dermatol ; 133(1): 221-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22832488

RESUMEN

The molecular mechanisms mediating cylindromatosis (CYLD) tumor suppressor function appear to be manifold. Here, we demonstrate that, in contrast to the increased levels of phosphorylated c-Jun NH(2)-terminal kinase (pJNK), CYLD was decreased in a majority of the melanoma cell lines and tissues examined. Exogenous expression of CYLD but not its catalytically deficient mutant markedly inhibited melanoma cell proliferation and migration in vitro and subcutaneous tumor growth in vivo. In addition, the melanoma cells expressing exogenous CYLD were unable to form pulmonary tumor nodules following tail-vein injection. At the molecular level, CYLD decreased ß1-integrin and inhibited pJNK induction by tumor necrosis factor-α or cell attachment to collagen IV. Moreover, CYLD induced an array of other molecular changes associated with modulation of the "malignant" phenotype, including a decreased expression of cyclin D1, N-cadherin, and nuclear Bcl3, and an increased expression of p53 and E-cadherin. Most interestingly, coexpression of the constitutively active MKK7 or c-Jun mutants with CYLD prevented the above molecular changes, and fully restored melanoma growth and metastatic potential in vivo. Our findings demonstrate that the JNK/activator protein 1 signaling pathway underlies the melanoma growth and metastasis that are associated with CYLD loss of function. Thus, restoration of CYLD and inhibition of JNK and ß1-integrin function represent potential therapeutic strategies for treatment of malignant melanoma.


Asunto(s)
Melanoma/patología , Neoplasias Cutáneas/patología , Proteínas Supresoras de Tumor/biosíntesis , Antígenos CD/biosíntesis , Proteínas del Linfoma 3 de Células B , Cadherinas/biosíntesis , Adhesión Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Colágeno Tipo IV/fisiología , Ciclina D1/biosíntesis , Enzima Desubiquitinante CYLD , Progresión de la Enfermedad , Humanos , Integrina beta1/metabolismo , MAP Quinasa Quinasa 7/biosíntesis , MAP Quinasa Quinasa 7/genética , Sistema de Señalización de MAP Quinasas/fisiología , Melanoma/metabolismo , Mutación , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas c-jun/biosíntesis , Proteínas Proto-Oncogénicas c-jun/genética , Neoplasias Cutáneas/metabolismo , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/biosíntesis , Factor de Necrosis Tumoral alfa/farmacología , Proteína p53 Supresora de Tumor/biosíntesis , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA