Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 177(7): 1757-1770.e21, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31056282

RESUMEN

Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.


Asunto(s)
Forma de la Célula , Matriz Extracelular/metabolismo , Glicocálix/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animales , Línea Celular , Matriz Extracelular/genética , Glicocálix/genética , Caballos , Humanos , Glicoproteínas de Membrana/genética , Mucinas/genética
2.
Biophys J ; 116(4): 694-708, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30736980

RESUMEN

The glycocalyx is a thick coat of proteins and carbohydrates on the outer surface of all eukaryotic cells. Overproduction of large, flexible or rod-like biopolymers, including hyaluronic acid and mucins, in the glycocalyx strongly correlates with the aggression of many cancer types. However, theoretical frameworks to predict the effects of these changes on cancer cell adhesion and other biophysical processes remain limited. Here, we propose a detailed modeling framework for the glycocalyx incorporating important physical effects of biopolymer flexibility, excluded volume, counterion mobility, and coupled membrane deformations. Because mucin and hyaluronic biopolymers are proposed to extend and rigidify depending on the extent of their decoration with side chains, we propose and consider two limiting cases for the structural elements of the glycocalyx: stiff beams and flexible chains. Simulations predict the mechanical response of the glycocalyx to compressive loads, which are imposed on cells residing in the highly confined spaces of the solid tumor or invaded tissues. Notably, the shape of the mechanical response transitions from hyperbolic to sigmoidal for more rod-like glycocalyx elements. These mechanical responses, along with the corresponding equilibrium protein organizations and membrane topographies, are summarized to aid in hypothesis generation and the evaluation of future experimental measurements. Overall, the modeling framework developed provides a theoretical basis for understanding the physical biology of the glycocalyx in human health.


Asunto(s)
Glicocálix/metabolismo , Fenómenos Mecánicos , Modelos Biológicos , Neoplasias/patología , Fenómenos Biomecánicos , Entropía , Glicoproteínas/metabolismo , Neoplasias/metabolismo
3.
Nat Phys ; 14(7): 658-669, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33859716

RESUMEN

The glycocalyx coating the outside of most cells is a polymer meshwork comprising proteins and complex sugar chains called glycans. From a physical perspective, the glycocalyx has long been considered a simple 'slime' that protects cells from mechanical disruption or against pathogen interactions, but the great complexity of the structure argues for the evolution of more advanced functionality: the glycocalyx serves as the complex physical environment within which cell-surface receptors reside and operate. Recent studies have demonstrated that the glycocalyx can exert thermodynamic and kinetic control over cell signalling by serving as the local medium within which receptors diffuse, assemble and function. The composition and structure of the glycocalyx change markedly with changes in cell state, including transformation. Notably, cancer-specific changes fuel the synthesis of monomeric building blocks and machinery for production of long-chain polymers that alter the physical and chemical structure of the glycocalyx. In this Review, we discuss these changes and their physical consequences on receptor function and emergent cell behaviours.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...