Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proteins ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166462

RESUMEN

While many computational methods accurately predict destabilizing mutations, identifying stabilizing mutations has remained a challenge, because of their relative rarity. We tested ΔΔG0 predictions from computational predictors such as Rosetta, ThermoMPNN, RaSP, and DeepDDG, using 82 mutants of the bacterial toxin CcdB as a test case. On this dataset, the best computational predictor is ThermoMPNN, which identifies stabilizing mutations with a precision of 68%. However, the average increase in Tm for these predicted mutations was only 1°C for CcdB, and predictions were poorer for a more challenging target, influenza neuraminidase. Using data from multiple previously described yeast surface display libraries and in vitro thermal stability measurements, we trained logistic regression models to identify stabilizing mutations with a precision of 90% and an average increase in Tm of 3°C for CcdB. When such libraries contain a population of mutants with significantly enhanced binding relative to the corresponding wild type, there is no benefit in using computational predictors. It is then possible to predict stabilizing mutations without any training, simply by examining the distribution of mutational binding scores. This avoids laborious steps of in vitro expression, purification, and stability characterization. When this is not the case, combining data from computational predictors with high-throughput experimental binding data enhances the prediction of stabilizing mutations. However, this requires training on stability data measured in vitro with known stabilized mutants. It is thus feasible to predict stabilizing mutations rapidly and accurately for any system of interest that can be subjected to a binding selection or screen.

2.
Cancers (Basel) ; 15(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37958378

RESUMEN

Juvenile myelomonocytic leukemia (JMML) is a deadly pediatric leukemia driven by RAS pathway mutations, of which >35% are gain-of-function in PTPN11. Although DNA hypermethylation portends severe clinical phenotypes, the landscape of histone modifications and chromatin profiles in JMML patient cells have not been explored. Using global mass cytometry, Epigenetic Time of Flight (EpiTOF), we analyzed hematopoietic stem and progenitor cells (HSPCs) from five JMML patients with PTPN11 mutations. These data revealed statistically significant changes in histone methylation, phosphorylation, and acetylation marks that were unique to JMML HSPCs when compared with healthy controls. Consistent with these data, assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis revealed significant alterations in chromatin profiles at loci encoding post-translational modification enzymes, strongly suggesting their mis-regulated expression. Collectively, this study reveals histone modification pathways as an additional epigenetic abnormality in JMML patient HSPCs, thereby uncovering a new family of potential druggable targets for the treatment of JMML.

3.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606045

RESUMEN

Systemic lupus erythematosus (SLE) affects 1 in 537 Black women, which is >2-fold more than White women. Black patients develop the disease at a younger age, have more severe symptoms, and have a greater chance of early mortality. We used a multiomics approach to uncover ancestry-associated immune alterations in patients with SLE and healthy controls that may contribute biologically to disease disparities. Cell composition, signaling, epigenetics, and proteomics were evaluated by mass cytometry; droplet-based single-cell transcriptomics and proteomics; and bead-based multiplex soluble mediator levels in plasma. We observed altered whole blood frequencies and enhanced activity in CD8+ T cells, B cells, monocytes, and DCs in Black patients with more active disease. Epigenetic modifications in CD8+ T cells (H3K27ac) could distinguish disease activity level in Black patients and differentiate Black from White patient samples. TLR3/4/7/8/9-related gene expression was elevated in immune cells from Black patients with SLE, and TLR7/8/9 and IFN-α phospho-signaling and cytokine responses were heightened even in immune cells from healthy Black control patients compared with White individuals. TLR stimulation of healthy immune cells recapitulated the ancestry-associated SLE immunophenotypes. This multiomic resource defines ancestry-associated immune phenotypes that differ between Black and White patients with SLE, which may influence the course and severity of SLE and other diseases.


Asunto(s)
Linfocitos B , Lupus Eritematoso Sistémico , Femenino , Humanos , Población Negra , Linfocitos T CD8-positivos , Lupus Eritematoso Sistémico/genética , Fenotipo , Población Blanca
4.
iScience ; 26(1): 105756, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36619977

RESUMEN

Current technologies do not allow predicting interactions between histone post-translational modifications (HPTMs) at a system-level. We describe a computational framework, imputation-followed-by-inference, to predict directed association between two HPTMs using EpiTOF, a mass cytometry-based platform that allows profiling multiple HPTMs at a single-cell resolution. Using EpiTOF profiles of >55,000,000 peripheral mononuclear blood cells from 158 healthy human subjects, we show that neural processes (NP) have significantly higher accuracy than linear regression and k-nearest neighbors models to impute the abundance of an HPTM. Next, we infer the direction of association to show we recapitulate known HPTM associations and identify several previously unidentified ones in healthy individuals. Using this framework in an influenza vaccine cohort, we identify changes in associations between 6 pairs of HPTMs 30 days following vaccination, of which several have been shown to be involved in innate memory. These results demonstrate the utility of our framework in identifying directed interactions between HPTMs.

5.
J Crohns Colitis ; 17(5): 804-815, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-36571819

RESUMEN

BACKGROUND AND AIMS: Current understanding of histone post-translational modifications [histone modifications] across immune cell types in patients with inflammatory bowel disease [IBD] during remission and flare is limited. The present study aimed to quantify histone modifications at a single-cell resolution in IBD patients during remission and flare and how they differ compared to healthy controls. METHODS: We performed a case-control study of 94 subjects [83 IBD patients and 11 healthy controls]. IBD patients had either ulcerative colitis [n = 38] or Crohn's disease [n = 45] in clinical remission or flare. We used epigenetic profiling by time-of-flight [EpiTOF] to investigate changes in histone modifications within peripheral blood mononuclear cells from IBD patients. RESULTS: We discovered substantial heterogeneity in histone modifications across multiple immune cell types in IBD patients. They had a higher proportion of less differentiated CD34+ haematopoietic progenitors, and a subset of CD56bright natural killer [NK] cells and γδ T cells characterized by distinct histone modifications associated with gene transcription. The subset of CD56bright NK cells had increases in several histone acetylations. An epigenetically defined subset of NK cells was associated with higher levels of C-reactive protein in peripheral blood. CD34+ monocytes from IBD patients had significantly decreased cleaved H3T22, suggesting they were epigenetically primed for macrophage differentiation. CONCLUSION: We describe the first systems-level quantification of histone modifications across immune cells from IBD patients at a single-cell resolution, revealing the increased epigenetic heterogeneity that is not possible with traditional ChIP-seq profiling. Our data open new directions in investigating the association between histone modifications and IBD pathology using other epigenomic tools.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Humanos , Histonas/metabolismo , Leucocitos Mononucleares/metabolismo , Estudios de Casos y Controles , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...