Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 16(14): e202202376, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-36997499

RESUMEN

The dependence of performance and stability of a zero-gap CO2 electrolyzer on the properties of the anion exchange membrane (AEM) is examined. This work firstly assesses the influence of the anolyte when using an Aemion membrane and then shows that when using 10 mM KHCO3 , a CO2 electrolyzer using a next-generation Aemion+ membrane can achieve lower cell voltages and longer lifetimes due to increased water permeation. The impact of lower permselectivity of Aemion+ on water transport is also discussed. Using Aemion+, a cell voltage of 3.17 V at 200 mA cm-2 is achieved at room temperature, with a faradaic efficiency of >90 %. Stable CO2 electrolysis at 100 mA cm-2 is demonstrated for 100 h, but with reduced lifetime at 300 mA cm-2 . However, the lifetime of the cell at high current densities is shown to be increased by improving water transport characteristics of the AEM and reducing dimensional swelling, as well as by improving cathode design to reduce localized dehydration of the membrane.

2.
ACS Appl Mater Interfaces ; 13(38): 46125-46133, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34542264

RESUMEN

The potentials at which water dissociation occurs in bipolar membranes (BPM) and the relationship between water dissociation and current-voltage curve characteristics are explored using a novel spectroelectrochemical approach in which an anion exchange membrane is doped with a pH indicator. Using this method, we visually detect a pH change in the BPM resulting from OH- formed during the water dissociation reaction. The color change is measured with a UV/vis spectrometer, while electrochemical characterization of the BPM is performed simultaneously. Additional measurements were performed on BPMs with varying anion and cation exchange membrane layer thickness. Our measurements provide direct evidence of water dissociation occurring within a BPM at cross-membrane potentials below 0.5 V, within the first limiting current density region. We also show that the effects of changing bulk anion and cation exchange layer thickness is highly dependent on the permselectivity of these layers.

3.
Phys Chem Chem Phys ; 19(9): 6677-6687, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28210735

RESUMEN

The dehydrogenation mechanism during the incubation period in nanocrystalline MgH2 (low α: converted metal fraction and dα/dt) and the reasons for the occurrence of the incubation period at 320, 350, and 400 °C were investigated. Pre-existing Mg crystallites can enhance Mg nucleation during the incubation period, as suggested by the estimated activation energy for nucleation (12 ± 2 kJ per mol H). The released H-atoms enter MgH2 as interstitials, as indicated by the MgH2 unit-cell contraction, resulting in increased equatorial Mg-H bond length, decreased charge-density distribution in the interstitial region, as observed from the charge-density maps, and decreased H-H distance in the {001} plane up to the midway of the incubation period. Eventually, hydrogen vacancies are created, as indicated by the red shift in the Eg and A1g peaks of Raman spectra. The high estimated activation energy for the growth of Mg (209 ± 8 kJ per mol H) renders it difficult and explains the reason for the presence of an incubation period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...