Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biomolecules ; 13(10)2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37892235

RESUMEN

Pseudoachondroplasia (PSACH), a severe dwarfing condition associated with early-onset joint degeneration and lifelong joint pain, is caused by mutations in cartilage oligomeric matrix protein (COMP). The mechanisms underlying the mutant-COMP pathology have been defined using the MT-COMP mouse model of PSACH that has the common D469del mutation. Mutant-COMP protein does not fold properly, and it is retained in the rough endoplasmic reticulum (rER) of chondrocytes rather than being exported to the extracellular matrix (ECM), driving ER stress that stimulates oxidative stress and inflammation, driving a self-perpetuating cycle. CHOP (ER stress signaling protein) and TNFα inflammation drive high levels of mTORC1 signaling, shutting down autophagy and blocking ER clearance, resulting in premature loss of chondrocytes that negatively impacts linear growth and causes early joint degeneration in MT-COMP mice and PSACH. Previously, we have shown that resveratrol treatment from birth to 20 weeks prevents joint degeneration and decreases the pathological processes in articular chondrocytes. Resveratrol's therapeutic mechanism of action in the mutant-COMP pathology was shown to act by primarily stimulating autophagy and reducing inflammation. Importantly, we demonstrated that MT-COMP mice experience pain consistent with PSACH joint pain. Here, we show, in the MT-COMP mouse, that resveratrol treatment must begin within 4 weeks to preserve joint health and reduce pain. Resveratrol treatment started at 6 or 8 weeks (to 20 weeks) was not effective in preventing joint degeneration. Collectively, our findings in MT-COMP mice show that there is a postnatal resveratrol treatment window wherein the inevitable mutant-COMP joint degeneration and pain can be prevented.


Asunto(s)
Inflamación , Osteoartritis , Ratones , Animales , Resveratrol/farmacología , Resveratrol/uso terapéutico , Mutación , Dolor , Artralgia
2.
JBMR Plus ; 6(5): e10623, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35509638

RESUMEN

The expression of microRNAs (miRNAs) is dysregulated in many types of cancers including osteosarcoma (OS) due to genetic and epigenetic alterations. Among these, miR-34c, an effector of tumor suppressor P53 and an upstream negative regulator of Notch signaling in osteoblast differentiation, is dysregulated in OS. Here, we demonstrated a tumor suppressive role of miR-34c in OS progression using in vitro assays and in vivo genetic mouse models. We found that miR-34c inhibits the proliferation and the invasion of metastatic OS cells, which resulted in reduction of the tumor burden and increased overall survival in an orthotopic xenograft model. Moreover, the osteoblast-specific overexpression of miR-34c increased survival in the osteoblast specific p53 mutant OS mouse model. We found that miR-34c regulates the transcription of several genes in Notch signaling (NOTCH1, JAG1, and HEY2) and in p53-mediated cell cycle and apoptosis (CCNE2, E2F5, E2F2, and HDAC1). More interestingly, we found that the metastatic-free survival probability was increased among a patient cohort from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) OS, which has lower expression of direct targets of miR-34c that was identified in our transcriptome analysis, such as E2F5 and NOTCH1. In conclusion, we demonstrate that miR-34c is a tumor suppressive miRNA in OS progression in vivo. In addition, we highlight the therapeutic potential of targeting miR-34c in OS. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35113812

RESUMEN

BACKGROUNDCurrently, there is no disease-specific therapy for osteogenesis imperfecta (OI). Preclinical studies demonstrate that excessive TGF-ß signaling is a pathogenic mechanism in OI. Here, we evaluated TGF-ß signaling in children with OI and conducted a phase I clinical trial of TGF-ß inhibition in adults with OI.METHODSHistology and RNA-Seq were performed on bones obtained from children. Gene Ontology (GO) enrichment assay, gene set enrichment analysis (GSEA), and Ingenuity Pathway Analysis (IPA) were used to identify dysregulated pathways. Reverse-phase protein array, Western blot, and IHC were performed to evaluate protein expression. A phase I study of fresolimumab, a TGF-ß neutralizing antibody, was conducted in 8 adults with OI. Safety and effects on bone remodeling markers and lumbar spine areal bone mineral density (LS aBMD) were assessed.RESULTSOI bone demonstrated woven structure, increased osteocytes, high turnover, and reduced maturation. SMAD phosphorylation was the most significantly upregulated GO molecular event. GSEA identified the TGF-ß pathway as the top activated signaling pathway, and IPA showed that TGF-ß1 was the most significant activated upstream regulator mediating the global changes identified in OI bone. Treatment with fresolimumab was well-tolerated and associated with increases in LS aBMD in participants with OI type IV, whereas participants with OI type III and VIII had unchanged or decreased LS aBMD.CONCLUSIONIncreased TGF-ß signaling is a driver pathogenic mechanism in OI. Anti-TGF-ß therapy could be a potential disease-specific therapy, with dose-dependent effects on bone mass and turnover.TRIAL REGISTRATIONClinicalTrials.gov NCT03064074.FUNDINGBrittle Bone Disorders Consortium (U54AR068069), Clinical Translational Core of Baylor College of Medicine Intellectual and Developmental Disabilities Research Center (P50HD103555) from National Institute of Child Health and Human Development, USDA/ARS (cooperative agreement 58-6250-6-001), and Sanofi Genzyme.


Asunto(s)
Osteogénesis Imperfecta , Adulto , Densidad Ósea , Huesos/metabolismo , Niño , Humanos , Vértebras Lumbares/metabolismo , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
4.
Am J Pathol ; 191(9): 1624-1637, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116024

RESUMEN

Increasing numbers of people are living with osteoarthritis (OA) due to aging and obesity, creating an urgent need for effective treatment and preventions. Two top risk factors for OA, age and obesity, are associated with endoplasmic reticulum (ER) stress. The I-ERS mouse, an ER stress-driven model of primary OA, was developed to study the role of ER stress in primary OA susceptibility. The I-ERS mouse has the unique ability to induce ER stress in healthy adult articular chondrocytes and cartilage, driving joint degeneration that mimics early primary OA. In this study, ER stress-induced damage occurred gradually and stimulated joint degeneration with OA characteristics including increased matrix metalloproteinase activity, inflammation, senescence, chondrocyte death, decreased proteoglycans, autophagy block, and gait dysfunction. Consistent with human OA, intense exercise hastened and increased the level of ER stress-induced joint damage. Notably, loss of a critical ER stress response protein (CHOP) largely ameliorated ER stress-stimulated OA outcomes including preserving proteoglycan content, reducing inflammation, and relieving autophagy block. Resveratrol diminished ER stress-induced joint degeneration by decreasing CHOP, TNFα, IL-1ß, MMP-13, pS6, number of TUNEL-positive chondrocytes, and senescence marker p16 INK4a. The finding, that a dietary supplement can prevent ER stressed-induced joint degeneration in mice, provides a preclinical foundation to potentially develop a prevention strategy for those at high risk to develop OA.


Asunto(s)
Antioxidantes/farmacología , Estrés del Retículo Endoplásmico/fisiología , Osteoartritis/patología , Resveratrol/farmacología , Animales , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Masculino , Ratones , Osteoartritis/etiología
5.
Hum Gene Ther ; 30(2): 225-235, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30070147

RESUMEN

Osteoarthritis (OA) is a degenerative disease of synovial joints characterized by progressive loss of articular cartilage, subchondral bone remodeling, and intra-articular inflammation with synovitis that results in chronic pain and motor impairment. Despite the economic and health impacts, current medical therapies are targeted at symptomatic relief of OA and fail to alter its progression. Given the complexity of OA pathogenesis, we hypothesized that a combinatorial gene therapy approach, designed to inhibit inflammation with interleukin-1 receptor antagonist (IL-1Ra) while promoting chondroprotection using lubricin (PRG4), would improve preservation of the joint compared to monotherapy alone. Employing two surgical techniques to model mild, moderate and severe posttraumatic OA, we found that combined delivery of helper-dependent adenoviruses (HDVs), expressing IL-1Ra and PRG4, preserved articular cartilage better than either monotherapy in both models as demonstrated by preservation of articular cartilage volume and surface area. This improved protection was associated with increased expression of proanabolic and cartilage matrix genes together with decreased expression of catabolic genes and inflammatory mediators. In addition to improvements in joint tissues, this combinatorial gene therapy prolonged protection against thermal hyperalgesia compared to either monotherapy. Taken together, our results show that a combinatorial strategy is superior to monotherapeutic approaches for treatment of posttraumatic OA.


Asunto(s)
Adenoviridae , Cartílago Articular , Terapia Genética , Hiperalgesia , Proteína Antagonista del Receptor de Interleucina 1 , Osteoartritis , Proteoglicanos , Transducción Genética , Heridas y Lesiones , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Modelos Animales de Enfermedad , Humanos , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Hiperalgesia/patología , Hiperalgesia/terapia , Proteína Antagonista del Receptor de Interleucina 1/biosíntesis , Proteína Antagonista del Receptor de Interleucina 1/genética , Masculino , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/terapia , Proteoglicanos/biosíntesis , Proteoglicanos/genética , Heridas y Lesiones/complicaciones , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología , Heridas y Lesiones/terapia
6.
Arthritis Rheumatol ; 70(11): 1757-1768, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30044894

RESUMEN

OBJECTIVE: Gene therapy holds great promise for the treatment of osteoarthritis (OA) because a single intraarticular injection can lead to long-term expression of therapeutic proteins within the joint. This study was undertaken to investigate the use of a helper-dependent adenovirus (HDAd)-mediated intraarticular gene therapy approach for long-term expression of interleukin-1 receptor antagonist (IL-1Ra) as sustained symptomatic and disease-modifying therapy for OA. METHODS: In mouse models of OA, efficacy of HDAd-IL-1Ra was evaluated by histologic analysis, micro-computed tomography (micro-CT), and hot plate analysis. In a horse OA model, safety and efficacy of HDAd-IL-1Ra were evaluated by blood chemistry, analyses of synovial fluid, synovial membrane, and cartilage, and gross pathology and lameness assessments. RESULTS: In skeletally immature mice, HDAd-IL-1Ra prevented development of cartilage damage, osteophytes, and synovitis. In skeletally immature and mature mice, treatment with HDAd-interleukin-1 receptor antagonist post-OA induction resulted in improved-albeit not significantly-cartilage status assessed histologically and significantly increased cartilage volume, cartilage surface, and bone surface covered by cartilage as assessed by micro-CT. Fewer osteophytes were observed in HDAd-IL-1Ra-treated skeletally immature mice. Synovitis was not affected in skeletally immature or mature mice. HDAd-IL-1Ra protected against disease-induced thermal hyperalgesia in skeletally mature mice. In the horse OA model, HDAd-IL-1Ra therapy significantly improved lameness parameters, indicating efficient symptomatic treatment. Moreover, macroscopically and histologically assessed cartilage and synovial membrane parameters were significantly improved, suggesting disease-modifying efficacy. CONCLUSION: These data from OA models in small and large animals demonstrated safe symptomatic and disease-modifying treatment with an HDAd-expressing IL-1Ra. Furthermore, this study establishes HDAd as a vector for joint gene therapy.


Asunto(s)
Artritis Experimental/terapia , Cartílago Articular/patología , Terapia Genética/métodos , Proteína Antagonista del Receptor de Interleucina 1/genética , Osteoartritis/terapia , Osteofito/patología , Rodilla de Cuadrúpedos/patología , Sinovitis/patología , Adenoviridae , Animales , Articulaciones del Carpo/diagnóstico por imagen , Articulaciones del Carpo/metabolismo , Articulaciones del Carpo/patología , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/metabolismo , Modelos Animales de Enfermedad , Miembro Anterior , Caballos , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Ligamentos Articulares/cirugía , Ratones , Osteoartritis/metabolismo , Osteofito/diagnóstico por imagen , Osteofito/metabolismo , Rodilla de Cuadrúpedos/diagnóstico por imagen , Rodilla de Cuadrúpedos/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Sinovitis/diagnóstico por imagen , Sinovitis/metabolismo , Microtomografía por Rayos X
7.
Sci Rep ; 7(1): 17175, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215029

RESUMEN

Tendons transmit contractile forces between musculoskeletal tissues. Whereas the biomechanical properties of tendons have been studied extensively, the molecular mechanisms regulating postnatal tendon development are not well understood. Here we examine the role of mTORC1 signaling in postnatal tendon development using mouse genetic approaches. Loss of mTORC1 signaling by removal of Raptor in tendons caused severe tendon defects postnatally, including decreased tendon thickness, indicating that mTORC1 is necessary for postnatal tendon development. By contrast, activation of mTORC1 signaling in tendons increased tendon cell numbers and proliferation. In addition, Tsc1 conditional knockout mice presented severely disorganized collagen fibers and neovascularization in the tendon midsubstance. Interestingly, collagen fibril diameter was significantly reduced in both Raptor and Tsc1 conditional knockout mice, albeit with variations in severity. We performed RNA-seq analysis using Achilles tendons to investigate the molecular changes underlying these tendon phenotypes. Raptor conditional knockout mice showed decreased extracellular matrix (ECM) structure-related gene expression, whereas Tsc1 conditional knockout mice exhibited changes in genes regulating TGF-ß/BMP/FGF signaling, as well as in genes controlling ECM structure and disassembly. Collectively, our studies suggest that maintaining physiological levels of mTORC1 signaling is essential for postnatal tendon development and maturation.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Reguladora Asociada a mTOR/fisiología , Tendones/patología , Proteína 1 del Complejo de la Esclerosis Tuberosa/fisiología , Animales , Animales Recién Nacidos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Perfilación de la Expresión Génica , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Noqueados , Transducción de Señal , Tendones/metabolismo
8.
Sci Rep ; 7(1): 10721, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878383

RESUMEN

Avascular necrosis of the femur head (AVNFH) is a debilitating disease caused due to the use of alcohol, steroids, following trauma or unclear (idiopathic) etiology, affecting mostly the middle aged population. Clinically AVNFH is associated with impaired blood supply to the femoral head resulting in bone necrosis and collapse. Although Homocysteine (HC) has been implicated in AVNFH, levels of homocysteine and its associated pathway metabolites have not been characterized. We demonstrate elevated levels of homocysteine and concomitantly reduced levels of vitamins B6 and B12, in plasma of AVNFH patients. AVNFH patients also had elevated blood levels of sodium and creatinine, and reduced levels of random glucose and haemoglobin. Biophysical and ultrastructural analysis of AVNFH bone revealed increased remodelling and reduced bone mineral density portrayed by increased carbonate to phosphate ratio and decreased Phosphate to amide ratio together with disrupted trabeculae, loss of osteocytes, presence of calcified marrow, and elevated expression of osteocalcin in the osteoblasts localized in necrotic regions. Taken together, our studies for the first time characterize the metabolomic, pathophysiological and morphometric changes associated with AVNFH providing insights for development of new markers and therapeutic strategies for this debilitating disorder.


Asunto(s)
Necrosis de la Cabeza Femoral/diagnóstico , Necrosis de la Cabeza Femoral/metabolismo , Metaboloma , Adulto , Biomarcadores , Fenómenos Biofísicos , Biopsia , Densidad Ósea , Remodelación Ósea , Femenino , Cabeza Femoral/metabolismo , Cabeza Femoral/patología , Cabeza Femoral/ultraestructura , Necrosis de la Cabeza Femoral/etiología , Histocitoquímica , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Redes y Vías Metabólicas , Metabolómica/métodos , Microscopía Electrónica , Persona de Mediana Edad , Radiografía , Espectrometría Raman , Adulto Joven
9.
Med Mycol Case Rep ; 14: 4-7, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27995051

RESUMEN

Disseminated histoplasmosis affecting the adrenal gland(s) of immunocompetent adults is a very rare infection. Here, we present a case of bilateral adrenal histoplasmosis in an immunocompetent, 62-year-old gentleman from Texas along with a brief review of the published literature. Given the risk of patient decompensation secondary to adrenal insufficiency and the wide availability of effective treatments, adrenal histoplasmosis must be considered even in immunocompetent adults who acquire adrenal masses.

10.
Cancer Cell ; 26(3): 390-401, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25203324

RESUMEN

Osteogenic sarcoma (OS) is a deadly skeletal malignancy whose cause is unknown. We report here a mouse model of OS based on conditional expression of the intracellular domain of Notch1 (NICD). Expression of the NICD in immature osteoblasts was sufficient to drive the formation of bone tumors, including OS, with complete penetrance. These tumors display features of human OS; namely, histopathology, cytogenetic complexity, and metastatic potential. We show that Notch activation combined with loss of p53 synergistically accelerates OS development in mice, although p53-driven OS is not Rbpj dependent, which demonstrates a dual dominance of the Notch oncogene and p53 mutation in the development of OS. Using this model, we also reveal the osteoblasts as the potential sources of OS.


Asunto(s)
Neoplasias Óseas/metabolismo , Osteosarcoma/metabolismo , Receptor Notch1/genética , Animales , Neoplasias Óseas/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Trasplante de Neoplasias , Osteoblastos/metabolismo , Osteosarcoma/patología , Estructura Terciaria de Proteína , Receptor Notch1/metabolismo , Transcriptoma
11.
Sci Transl Med ; 5(176): 176ra34, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23486780

RESUMEN

Osteoarthritis (OA) is a common degenerative condition that afflicts more than 70% of the population between 55 and 77 years of age. Although its prevalence is rising globally with aging of the population, current therapy is limited to symptomatic relief and, in severe cases, joint replacement surgery. We report that intra-articular expression of proteoglycan 4 (Prg4) in mice protects against development of OA. Long-term Prg4 expression under the type II collagen promoter (Col2a1) does not adversely affect skeletal development but protects from developing signs of age-related OA. The protective effect is also shown in a model of posttraumatic OA created by cruciate ligament transection. Moreover, intra-articular injection of helper-dependent adenoviral vector expressing Prg4 protected against the development of posttraumatic OA when administered either before or after injury. Gene expression profiling of mouse articular cartilage and in vitro cell studies show that Prg4 expression inhibits the transcriptional programs that promote cartilage catabolism and hypertrophy through the up-regulation of hypoxia-inducible factor 3α. Analyses of available human OA data sets are consistent with the predictions of this model. Hence, our data provide insight into the mechanisms for OA development and offer a potential chondroprotective approach to its treatment.


Asunto(s)
Osteoartritis/metabolismo , Osteoartritis/prevención & control , Proteoglicanos/metabolismo , Animales , Línea Celular , Colágeno Tipo II/genética , Humanos , Captura por Microdisección con Láser , Masculino , Ratones , Ratones Transgénicos , Osteoartritis/genética , Regiones Promotoras Genéticas/genética , Proteoglicanos/genética
12.
Arthritis Rheum ; 65(2): 388-96, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23124630

RESUMEN

OBJECTIVE: The mouse is an optimal model organism in which gene-environment interactions can be used to study the pathogenesis of osteoarthritis (OA). The gold standard for arthritis research in mice is based on histopathology and immunohistochemistry, which are labor-intensive, prone to sampling bias and technical variability, and limited in throughput. The aim of this study was to develop a new technique that assesses mouse cartilage by integrating quantitative volumetric imaging techniques. METHODS: A novel mouse model of OA was generated by cruciate ligament transection (CLT) and evaluated by histopathology and immunohistochemistry. Knee joint specimens were then imaged using a new technique that combines high-resolution micro-computed tomography (micro-CT) and phase-contrast optics followed by quantitative analyses. A comparative analysis was also performed in a previously established mouse model of OA generated by destabilization of the medial meniscus (DMM). RESULTS: Phase-contrast micro-CT achieved cellular resolution of chondrocytes and quantitative assessment of parameters such as articular cartilage volume and surface area. In mouse models of OA generated by either CLT or DMM, we showed that phase-contrast micro-CT distinguished control and OA cartilage by providing quantitative measures with high reproducibility and minimal variability. Features of OA at the cellular or tissue level could also be observed in images generated by phase-contrast micro-CT. CONCLUSION: We established an imaging technology that comprehensively assessed and quantified the 2-dimensional and 3-dimensional changes of articular cartilage. Application of this technology will facilitate the rapid and high-throughput assessment of genetic and therapeutic models of OA in mice.


Asunto(s)
Artritis Experimental/diagnóstico por imagen , Cartílago Articular/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Microscopía de Contraste de Fase , Osteoartritis de la Rodilla/diagnóstico por imagen , Animales , Ligamento Cruzado Anterior/diagnóstico por imagen , Condrocitos/diagnóstico por imagen , Masculino , Ratones , Microtomografía por Rayos X
13.
Hum Pathol ; 43(12): 2213-22, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22748303

RESUMEN

The disease mechanisms and histology of plaque development associated with atherosclerosis remain incredibly complex and not entirely understood. Recent investigations have emphasized the importance of inflammation in atherosclerosis. Several studies have also indicated heterotopic or extraskeletal bone formation in atherosclerotic vessels. The mechanisms behind heterotopic ossification appear to have similarities to those underlying atherosclerosis, with inflammation being a key inductive component to heterotopic ossification. Therefore, in the present study, we evaluated the histology associated with pathologies of atherosclerosis and heterotopic ossification in 271 coronary vessel tissue samples. We examined the prevalence and features of the inflammatory response as well as new vessel and bone formation. Inflammation and neovascularization were observed both in the adventitia and within the atherosclerotic lesions of the vessels themselves. Intriguingly, neural changes, including collections of inflammatory cells and expression of neuroinflammatory factors, were detected in the adventitial nerves of the vessels. Mature lamellar bone was found in 18 coronary vessels (7%), often with hematopoietic elements and active bone remodeling. Brown adipocytes, which pattern heterotopic bone formation, were present within the atherosclerotic lesions (28%, or 75/271). As expected, there was a strong correlation between the presence of cholesterol and plaque formation (P < .0001), but there also seemed to be a trend toward a connection between the presence of brown adipocytes and plaque. From this histologic evaluation, along with cholesterol and dystrophic calcification, we noted a novel appearance of brown adipocytes as well as neural changes, which may provide new insights to further our understanding of atherosclerosis.


Asunto(s)
Tejido Adiposo Pardo/patología , Aterosclerosis/patología , Vasos Coronarios/patología , Osificación Heterotópica/patología , Nervios Periféricos/patología , Enfermedad de la Arteria Coronaria/patología , Humanos , Inflamación/patología , Placa Aterosclerótica/patología , Túnica Íntima/patología , Túnica Media/patología
14.
Ann Surg ; 255(1): 23-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21775883

RESUMEN

BACKGROUND: As extracorporeal shock wave therapy (ESWT) can enhance healing of skin graft donor sites, this study focused on shock wave effects in burn wounds. METHODS: A predefined cohort of 50 patients (6 with incomplete data or lost to follow-up) with acute second-degree burns from a larger study of 100 patients were randomly assigned between December 2006 and December 2007 to receive standard therapy (burn wound debridement/topical antiseptic therapy) with (n = 22) or without (n = 22) defocused ESWT (100 impulses/cm at 0.1 mJ/mm) applied once to the study burn, after debridement. Randomization sequence was computer-generated, and patients were blinded to treatment allocation. The primary endpoint, time to complete burn wound epithelialization, was determined by independent, blinded-observer. A worst case scenario was applied to the missing cases to rule out the impact of withdrawal bias. RESULTS: Patient characteristics across the 2 study groups were balanced (P > 0.05) except for older age (53 ± 17 vs. 38 ± 13 years, P = 0.002) in the ESWT group. Mean time to complete (≥95%) epithelialization (CE) for patients that did and did not undergo ESWT was 9.6 ± 1.7 and 12.5 ± 2.2 days, respectively (P < 0.0005). When age (continuous variable) and treatment group (binary) were examined in a linear regression model to control the baseline age imbalance, time to CE, age was not significant (P = 0.33) and treatment group retained significance (P < 0.0005). Statistical significance (P = 0.001) was retained when ESWT cases with missing follow-up were assigned the longest time to CE and when controls with missing follow-up were assigned the shortest time to CE. CONCLUSIONS: In this randomized phase II study, application of a single defocused shock wave treatment to the superficial second-degree burn wound after debridement/topical antiseptic therapy significantly accelerated epithelialization. This finding warrants confirmation in a larger phase III trial (ClinicalTrials.gov identifier: NCT01242423).


Asunto(s)
Quemaduras/terapia , Terapia por Ultrasonido/métodos , Cicatrización de Heridas/fisiología , Adulto , Anciano , Antiinfecciosos Locales/uso terapéutico , Biguanidas/uso terapéutico , Quemaduras/fisiopatología , Estudios de Cohortes , Desbridamiento , Femenino , Alemania , Humanos , Iminas , Masculino , Persona de Mediana Edad , Piridinas , Cicatrización de Heridas/efectos de los fármacos
15.
J Cell Biochem ; 112(10): 2748-58, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21678472

RESUMEN

Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1(-/-) ), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Inflamación Neurogénica/complicaciones , Inflamación Neurogénica/fisiopatología , Osificación Heterotópica/etiología , Osificación Heterotópica/metabolismo , Células Receptoras Sensoriales/patología , Animales , Proteína Morfogenética Ósea 2/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Línea Celular , Cromolin Sódico/farmacología , Inmunohistoquímica , Factor 4 Similar a Kruppel , Ratones , Ratones Endogámicos C57BL , Osificación Heterotópica/genética , Células Receptoras Sensoriales/inmunología , Sustancia P/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Microtomografía por Rayos X
18.
J Bone Miner Res ; 25(5): 1147-56, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19839764

RESUMEN

Heterotopic ossification (HO), or endochondral bone formation at nonskeletal sites, often results from traumatic injury and can lead to devastating consequences. Alternatively, the ability to harness this phenomenon would greatly enhance current orthopedic tools for treating segmental bone defects. Thus, understanding the earliest events in this process potentially would allow us to design more targeted therapies to either block or enhance this process. Using a murine model of HO induced by delivery of adenovirus-transduced cells expressing bone morphogenetic protein 2 (BMP-2), we show here that one of the earliest stages in this process is the establishment of new vessels prior to the appearance of cartilage. As early as 48 hours after induction of HO, we observed the appearance of brown adipocytes expressing vascular endothelial growth factors (VEGFs) simultaneous with endothelial progenitor replication. This was determined by using a murine model that possesses the VEGF receptor 2 (Flk1) promoter containing an endothelial cell enhancer driving the expression of nuclear-localized yellow fluorescent protein (YFP). Expression of this marker has been shown previously to correlate with the establishment of new vasculature, and the nuclear localization of YFP expression allowed us to quantify changes in endothelial cell numbers. We found a significant increase in Flk1-H2B::YFP cells in BMP-2-treated animals compared with controls. The increase in endothelial progenitors occurred 3 days prior to the appearance of early cartilage. The data collectively suggest that vascular remodeling and growth may be essential to modify the microenvironment and enable engraftment of the necessary progenitors to form endochondral bone.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Cartílago/irrigación sanguínea , Osificación Heterotópica/metabolismo , Adipocitos Marrones/metabolismo , Animales , Antígeno Ki-67/biosíntesis , Ratones , ARN Mensajero/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Factor de von Willebrand/biosíntesis
19.
Hum Gene Ther ; 18(8): 733-45, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17691858

RESUMEN

Osteoinductive systems to induce targeted rapid bone formation hold clinical promise, but development of technologies for clinical use that must be tested in animal models is often a difficult challenge. We previously demonstrated that implantation of human cells transduced with Ad5F35BMP2 to express high levels of bone morphogenetic protein-2 (BMP2) resulted in rapid bone formation at targeted sites. Inclusion of human cells in this model precluded us from testing this system in an immune-competent animal model, thus limiting information about the efficacy of this approach. Here, for the first time we demonstrate the similarity between BMP2-induced endochondral bone formation in a system using human cells in an immune-incompetent mouse and a murine cell-based BMP2 gene therapy system in immune-competent animals. In both cases the delivery cells are rapidly cleared, within 5 days, and in neither case do they appear to contribute to any of the structures forming in the tissues. Endochondral bone formation progressed through a highly ordered series of stages that were both morphologically and temporally indistinguishable between the two models. Even longterm analysis of the heterotopic bone demonstrated similar bone volumes and the eventual remodeling to form similar structures. The results suggest that the ability of BMP2 to rapidly induce bone formation overrides contributions from either immune status or the nature of delivery cells.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Terapia Genética , Inmunocompetencia/inmunología , Modelos Biológicos , Osteogénesis/fisiología , Factor de Crecimiento Transformador beta/genética , Células 3T3 , Animales , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/biosíntesis , Proteínas Morfogenéticas Óseas/uso terapéutico , Humanos , Ratones , Ratones Endogámicos C57BL , Osteogénesis/inmunología , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/uso terapéutico
20.
Biomaterials ; 28(30): 4469-79, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17645942

RESUMEN

Adenovirus BMP2 gene therapy has potential of a robust endogenous BMP2 production, while circumventing many of the problems currently associated with recombinant BMP2. The study objective was to determine and compare the ability of adenovirus BMP2 ex vivo gene therapy in combination with three types of collagen carriers to release BMP2 in vitro and to induce heterotopic bone formation in vivo. Human CD45-negative bone marrow cells were ex vivo transduced with a chimeric Ad5F35BMP2. The bioactivity of BMP2 produced by the transduced cells without a carrier, or in combination with three types of collagen carriers (injectable gel, microporous sponge, collagen-mineral composite) was measured and compared to rhBMP2. The heterotopic osteoinductivity assay was performed in immunocompromised NOD/SCID mice. A statistically significant decrease in the amount of rhBMP2 and adenoviral BMP2 released in vitro from the collagen-mineral composite carrier was noted (21% and 12%, respectively), whereas the amounts of rhBMP2 and adenoviral BMP2 released from the gel or sponge carriers were comparable. In vivo, 14 days post-implantation, no bone was formed consistently in groups with the empty Ad5F35HM4 control vector. New bone formation was evident radiographically and histologically in all groups with the Ad5F35BMP2-transduced cells irrespective of the presence or absence of a carrier. The presence of a carrier resulted in osteogenesis limited to the implantation site, and was most pronounced for solid (sponge, composite) carriers. The physical characteristics of the carrier determined the new bone spatial distribution at the site. Solid carriers reduced the clearance of AD5F35-transduced cells by the host immune cells. Adenoviral ex vivo BMP2 gene therapy in combination with collagen carriers with distinct physical characteristics offers the prospects of adjusting this approach to optimally match the specific therapeutic requirements.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Colágeno/química , Portadores de Fármacos/química , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Osteogénesis/fisiología , Adenoviridae/genética , Animales , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/análisis , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/diagnóstico por imagen , Huesos/metabolismo , Línea Celular , Humanos , Inmunohistoquímica , Inyecciones Intramusculares , Ratones , Ratones SCID , Radiografía , Proteínas Recombinantes/metabolismo , Células del Estroma/fisiología , Factores de Tiempo , Transducción Genética , Factor de Crecimiento Transformador beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...