Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 133(24)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099496

RESUMEN

Cell therapies such as tumor-infiltrating lymphocyte (TIL) therapy have shown promise in the treatment of patients with refractory solid tumors, with improvement in response rates and durability of responses nevertheless sought. To identify targets capable of enhancing the antitumor activity of T cell therapies, large-scale in vitro and in vivo clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens were performed, with the SOCS1 gene identified as a top T cell-enhancing target. In murine CD8+ T cell-therapy models, SOCS1 served as a critical checkpoint in restraining the accumulation of central memory T cells in lymphoid organs as well as intermediate (Texint) and effector (Texeff) exhausted T cell subsets derived from progenitor exhausted T cells (Texprog) in tumors. A comprehensive CRISPR tiling screen of the SOCS1-coding region identified sgRNAs targeting the SH2 domain of SOCS1 as the most potent, with an sgRNA with minimal off-target cut sites used to manufacture KSQ-001, an engineered TIL therapy with SOCS1 inactivated by CRISPR/Cas9. KSQ-001 possessed increased responsiveness to cytokine signals and enhanced in vivo antitumor function in mouse models. These data demonstrate the use of CRISPR/Cas9 screens in the rational design of T cell therapies.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Animales , Ratones , ARN Guía de Sistemas CRISPR-Cas , Linfocitos Infiltrantes de Tumor , Inmunoterapia Adoptiva , Neoplasias/genética , Edición Génica , Proteína 1 Supresora de la Señalización de Citocinas/genética
3.
Nat Commun ; 9(1): 5450, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575730

RESUMEN

Systematic exploration of cancer cell vulnerabilities can inform the development of novel cancer therapeutics. Here, through analysis of genome-scale loss-of-function datasets, we identify adenosine deaminase acting on RNA (ADAR or ADAR1) as an essential gene for the survival of a subset of cancer cell lines. ADAR1-dependent cell lines display increased expression of interferon-stimulated genes. Activation of type I interferon signaling in the context of ADAR1 deficiency can induce cell lethality in non-ADAR1-dependent cell lines. ADAR deletion causes activation of the double-stranded RNA sensor, protein kinase R (PKR). Disruption of PKR signaling, through inactivation of PKR or overexpression of either a wildtype or catalytically inactive mutant version of the p150 isoform of ADAR1, partially rescues cell lethality after ADAR1 loss, suggesting that both catalytic and non-enzymatic functions of ADAR1 may contribute to preventing PKR-mediated cell lethality. Together, these data nominate ADAR1 as a potential therapeutic target in a subset of cancers.


Asunto(s)
Adenosina Desaminasa/genética , Neoplasias Pulmonares/genética , Proteínas de Unión al ARN/genética , eIF-2 Quinasa/metabolismo , Células A549 , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/metabolismo , Fosforilación
4.
Nat Genet ; 50(10): 1381-1387, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224644

RESUMEN

Unlike most tumor suppressor genes, the most common genetic alterations in tumor protein p53 (TP53) are missense mutations1,2. Mutant p53 protein is often abundantly expressed in cancers and specific allelic variants exhibit dominant-negative or gain-of-function activities in experimental models3-8. To gain a systematic view of p53 function, we interrogated loss-of-function screens conducted in hundreds of human cancer cell lines and performed TP53 saturation mutagenesis screens in an isogenic pair of TP53 wild-type and null cell lines. We found that loss or dominant-negative inhibition of wild-type p53 function reliably enhanced cellular fitness. By integrating these data with the Catalog of Somatic Mutations in Cancer (COSMIC) mutational signatures database9,10, we developed a statistical model that describes the TP53 mutational spectrum as a function of the baseline probability of acquiring each mutation and the fitness advantage conferred by attenuation of p53 activity. Collectively, these observations show that widely-acting and tissue-specific mutational processes combine with phenotypic selection to dictate the frequencies of recurrent TP53 mutations.


Asunto(s)
Mutagénesis/fisiología , Mutación , Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Células A549 , Alelos , Sistemas CRISPR-Cas , Células Cultivadas , Análisis Mutacional de ADN , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/patología , Análisis de Secuencia de ADN
5.
Cell Rep ; 16(10): 2618-2629, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27568562

RESUMEN

ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2(S394A) knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eµ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2(S394A) mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2(S394A) mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/efectos de la radiación , Oncogenes , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Radiación Ionizante , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Tejido Linfoide/metabolismo , Tejido Linfoide/patología , Tejido Linfoide/efectos de la radiación , Ratones Transgénicos , Fosforilación/efectos de la radiación , Fosfoserina/metabolismo , Estabilidad Proteica/efectos de la radiación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Tolerancia a Radiación/efectos de la radiación , Transducción de Señal/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo
6.
Mol Cancer Res ; 14(2): 207-15, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26582713

RESUMEN

UNLABELLED: The identification of somatic genetic alterations that confer sensitivity to pharmacologic inhibitors has led to new cancer therapies. To identify mutations that confer an exceptional dependency, shRNA-based loss-of-function data were analyzed from a dataset of numerous cell lines to reveal genes that are essential in a small subset of cancer cell lines. Once these cell lines were determined, detailed genomic characterization from these cell lines was utilized to ascertain the genomic aberrations that led to this extreme dependency. This method, in a large subset of lung cancer cell lines, yielded a single lung adenocarcinoma cell line, NCI-H1437, which is sensitive to RNA interference of MAP2K1 expression. Notably, NCI-H1437 is the only lung cancer cell line included in the dataset with a known activating mutation in MAP2K1 (Q56P). Subsequent validation using shRNA and CRISPR-Cas9 confirmed MAP2K1 dependency. In vitro and in vivo inhibitor studies established that NCI-H1437 cells are sensitive to MEK1 inhibitors, including the FDA-approved drug trametinib. Like NCI-H1437 cells, the MAP2K1-mutant cell lines SNU-C1 (colon) and OCUM-1 (gastric) showed decreased viability after MAP2K1 depletion via Cas9-mediated gene editing. Similarly, these cell lines were particularly sensitive to trametinib treatment compared with control cell lines. On the basis of these data, cancers that harbor driver mutations in MAP2K1 could benefit from treatment with MEK1 inhibitors. Furthermore, this functional data mining approach provides a general method to experimentally test genomic features that confer dependence in tumors. IMPLICATIONS: Cancers with an activated RAS/MAPK pathway driven by oncogenic MAP2K1 mutations may be particularly sensitive to MEK1 inhibitor treatments.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , MAP Quinasa Quinasa 1/genética , Mutación , Inhibidores de Proteínas Quinasas/administración & dosificación , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Interferencia de ARN , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma del Pulmón , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Biología Computacional/métodos , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Piridonas/farmacología , Pirimidinonas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Genes Cancer ; 3(3-4): 209-18, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23150754

RESUMEN

The p53 transcription factor regulates the expression of numerous genes whose products affect cell proliferation, senescence, cellular metabolism, apoptosis, and DNA repair. These p53-mediated effects can inhibit the growth of stressed or mutated cells and suppress tumorigenesis in the organism. However, the various growth-inhibitory properties of p53 must be kept in check in nondamaged cells in order to facilitate proper embryogenesis or the homeostatic maintenance of adult tissues. This requisite inhibition of p53 is performed primarily by the MDM oncoproteins, Mdm2 and MdmX. These p53-binding proteins limit p53 activity both in normal cells and in stressed cells seeking to promote resolution of their p53-stress response. Many mouse models bearing genetic alterations in Mdm2 or MdmX have been generated to explore the function and regulation of MDM-p53 signaling in development, in tissue homeostasis, in aging, and in cancer. These models not only have demonstrated a critical need for Mdm2 and MdmX in normal cell growth and in development but more recently have identified the MDM-p53 signaling axis as a key regulator of the cellular response to a wide variety of genetic or metabolic stresses. In this review, we discuss what has been learned from various studies of these Mdm2 and MdmX mouse models and highlight a few of the many important remaining questions.

8.
Cancer Cell ; 21(5): 668-679, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22624716

RESUMEN

DNA damage induced by ionizing radiation activates the ATM kinase, which subsequently stabilizes and activates the p53 tumor suppressor protein. Although phosphorylation of p53 by ATM was found previously to modulate p53 levels and transcriptional activities in vivo, it does not appear to be a major regulator of p53 stability. We have utilized mice bearing altered Mdm2 alleles to demonstrate that ATM phosphorylation of Mdm2 serine 394 is required for robust p53 stabilization and activation after DNA damage. In addition, we demonstrate that dephosphorylation of Mdm2 Ser394 regulates attenuation of the p53-mediated response to DNA damage. Therefore, the phosphorylation status of Mdm2 Ser394 governs p53 protein levels and functions in cells undergoing DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/efectos de la radiación , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/efectos de la radiación , Proteínas de Unión al ADN/efectos de la radiación , Activación Enzimática , Intestino Delgado/enzimología , Intestino Delgado/patología , Intestino Delgado/efectos de la radiación , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Mutación Missense , Fosforilación , Proteínas Serina-Treonina Quinasas/efectos de la radiación , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Tolerancia a Radiación , Serina , Bazo/enzimología , Bazo/patología , Bazo/efectos de la radiación , Timo/enzimología , Timo/patología , Timo/efectos de la radiación , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/efectos de la radiación
9.
Dev Biol ; 353(1): 1-9, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21334322

RESUMEN

The p53 transcription factor is activated by various types of cell stress or DNA damage and induces the expression of genes that control cell growth and inhibit tumor formation. Analysis of mice that express mutant forms of p53 suggest that inappropriate p53 activation can alter tissue homeostasis and life span, connecting p53 tumor suppressor functions with accelerated aging. However, other mouse models that display increased levels of wildtype p53 in various tissues fail to corroborate a link between p53 and aging phenotypes, possibly due to the retention of signaling pathways that negatively regulate p53 activity in these models. In this present study, we have generated mice lacking Mdm2 in the epidermis. Deletion of Mdm2, the chief negative regulator of p53, induced an aging phenotype in the skin of mice, including thinning of the epidermis, reduced wound healing, and a progressive loss of fur. These phenotypes arise due to an induction of p53-mediated senescence in epidermal stem cells and a gradual loss of epidermal stem cell function. These results reveal that activation of endogenous p53 by ablation of Mdm2 can induce accelerated aging phenotypes in mice.


Asunto(s)
Senescencia Celular , Células Epidérmicas , Proteínas Proto-Oncogénicas c-mdm2/fisiología , Transducción de Señal/fisiología , Envejecimiento de la Piel , Células Madre/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/análisis , Ratones , Fenotipo
10.
Cancer Res ; 70(20): 8066-76, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20876800

RESUMEN

Unlike the growth factor dependence of normal cells, cancer cells can maintain growth factor-independent glycolysis and survival through expression of oncogenic kinases, such as BCR-Abl. Although targeted kinase inhibition can promote cancer cell death, therapeutic resistance develops frequently, and further mechanistic understanding is needed. Cell metabolism may be central to this cell death pathway, as we have shown that growth factor deprivation leads to decreased glycolysis that promotes apoptosis via p53 activation and induction of the proapoptotic protein Puma. Here, we extend these findings to show that elevated glucose metabolism, characteristic of cancer cells, can suppress protein kinase Cδ (PKCδ)-dependent p53 activation to maintain cell survival after growth factor withdrawal. In contrast, DNA damage-induced p53 activation was PKCδ independent and was not metabolically sensitive. Both stresses required p53 Ser(18) phosphorylation for maximal activity but led to unique patterns of p53 target gene expression, showing distinct activation and response pathways for p53 that were differentially regulated by metabolism. Consistent with oncogenic kinases acting to replace growth factors, treatment of BCR-Abl-expressing cells with the kinase inhibitor imatinib led to reduced metabolism and p53- and Puma-dependent cell death. Accordingly, maintenance of glucose uptake inhibited p53 activation and promoted imatinib resistance. Furthermore, inhibition of glycolysis enhanced imatinib sensitivity in BCR-Abl-expressing cells with wild-type p53 but had little effect on p53-null cells. These data show that distinct pathways regulate p53 after DNA damage and metabolic stress and that inhibiting glucose metabolism may enhance the efficacy of and overcome resistance to targeted molecular cancer therapies.


Asunto(s)
Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Aerobiosis , Apoptosis , Proteínas de Ciclo Celular/genética , División Celular , Supervivencia Celular , Daño del ADN , Glucólisis , Humanos , Activación de Linfocitos , Proteínas Nucleares/genética , Plásmidos , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-mdm2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Transfección , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína X Asociada a bcl-2/genética , Proteína bcl-X/genética , Dominios Homologos src/genética
11.
Proc Natl Acad Sci U S A ; 107(25): 11423-8, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20534538

RESUMEN

Ing4 is a member of the inhibitor of growth (ING) family of chromatin-modifying proteins. Biochemical experiments indicate that Ing4 is a subunit of the HB01-JADE-hEAF6 histone acetyltransferase complex responsible for most nucleosomal histone H4 acetylation in eukaryotes, and transfection studies suggest that Ing4 may regulate a wide variety of cellular processes, including DNA repair, apoptosis, cell-cycle regulation, metastasis, angiogenesis, and tumor suppression. However, in vivo evidence for a physiological role for Ing4 in cell-growth regulation is lacking. We have generated Ing4-deficient mice to explore the role of Ing4 in development, tumorigenesis, and in NF-kappaB signaling. Ing4-null mice develop normally and are viable. Although mice deficient for Ing4 fail to form spontaneous tumors, they are hypersensitive to LPS treatment and display elevated cytokine responses. Macrophages isolated from Ing4-null mice have increased levels of nuclear p65/RelA protein, resulting in increased RelA binding to NF-kappaB target promoters and up-regulation of cytokine gene expression. However, increased promoter occupancy by RelA in LPS-stimulated, Ing4-null cells does not always correlate with increased NF-kappaB target-gene expression, as RelA activation of a subset of cytokine promoters also requires Ing4 for proper histone H4 acetylation. Furthermore, activation of the IkappaB alpha promoter by RelA is also Ing4-dependent, and LPS-stimulated, Ing4-null cells have reduced levels of IkappaB alpha promoter H4 acetylation and IkappaB gene expression. Thus, Ing4 negatively regulates the cytokine-mediated inflammatory response in mice by facilitating NF-kappaB activation of IkappaB promoters, thereby suppressing nuclear RelA levels and the activation of select NF-kappaB target cytokines.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Homeodominio/metabolismo , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Proteínas Supresoras de Tumor/metabolismo , Animales , Núcleo Celular/metabolismo , Cruzamientos Genéticos , Citocinas/metabolismo , Inflamación , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Transducción de Señal , Factor de Transcripción ReIA/metabolismo
12.
Mol Cancer Res ; 8(2): 216-22, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20145032

RESUMEN

ATM and p53 are critical regulators of the cellular DNA damage response and function as potent tumor suppressors. In cells undergoing ionizing radiation, ATM is activated by double-strand DNA breaks and phosphorylates the NH(2) terminus of p53 at serine residue 18. We have previously generated mice bearing an amino acid substitution at this position (p53S18A) and documented a role for p53 phosphorylation in DNA damage-induced apoptosis. In this present study, we have crossed E mu myc transgenic mice with our p53S18A mice to explore a role for ATM-p53 signaling in response to oncogene-induced tumorigenesis. Similar to DNA damage induced by ionizing radiation, expression of c-Myc in pre-B cells induces p53 serine 18 phosphorylation and Puma expression to promote apoptosis. E mu myc transgenic mice develop B-cell lymphoma more rapidly when heterozygous or homozygous for p53S18A alleles. However, E mu myc-induced tumorigenesis in p53S18A mice is slower than that observed in E mu myc mice deficient for either p53 or ATM, indicating that both p53-induced apoptosis and p53-induced growth arrest contribute to the suppression of B-cell lymphoma formation in E mu myc mice. These findings further reveal that oncogene expression and DNA damage activate the same ATM-p53 signaling cascade in vivo to regulate apoptosis and tumorigenesis.


Asunto(s)
Apoptosis/fisiología , Transformación Celular Neoplásica/metabolismo , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/genética , Daño del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Linfoma de Células B/genética , Ratones , Ratones Endogámicos C57BL , Oncogenes/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Serina/metabolismo , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...