Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1325090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348034

RESUMEN

Smoking is a leading risk factor of chronic obstructive pulmonary disease (COPD), that is characterized by chronic lung inflammation, tissue remodeling and emphysema. Although inflammation is critical to COPD pathogenesis, the cellular and molecular basis underlying smoking-induced lung inflammation and pathology remains unclear. Using murine smoke models and single-cell RNA-sequencing, we show that smoking establishes a self-amplifying inflammatory loop characterized by an influx of molecularly heterogeneous neutrophil subsets and excessive recruitment of monocyte-derived alveolar macrophages (MoAM). In contrast to tissue-resident AM, MoAM are absent in homeostasis and characterized by a pro-inflammatory gene signature. Moreover, MoAM represent 46% of AM in emphysematous mice and express markers causally linked to emphysema. We also demonstrate the presence of pro-inflammatory and tissue remodeling associated MoAM orthologs in humans that are significantly increased in emphysematous COPD patients. Inhibition of the IRAK4 kinase depletes a rare inflammatory neutrophil subset, diminishes MoAM recruitment, and alleviates inflammation in the lung of cigarette smoke-exposed mice. This study extends our understanding of the molecular signaling circuits and cellular dynamics in smoking-induced lung inflammation and pathology, highlights the functional consequence of monocyte and neutrophil recruitment, identifies MoAM as key drivers of the inflammatory process, and supports their contribution to pathological tissue remodeling.


Asunto(s)
Enfisema , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Ratones , Animales , Macrófagos Alveolares/patología , Monocitos/patología , Neumonía/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/etiología , Enfisema Pulmonar/patología , Inflamación/patología , Enfisema/patología
2.
SLAS Discov ; 28(4): 149-162, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37072070

RESUMEN

Macrophages play a pivotal role in drug discovery due to their key regulatory functions in health and disease. Overcoming the limited availability and donor variability of human monocyte-derived macrophages (MDMs), human induced pluripotent stem cell (iPSC)-derived macrophages (IDMs) could provide a promising tool for both disease modeling and drug discovery. To access large numbers of model cells for medium- to high-throughput application purposes, an upscaled protocol was established for differentiation of iPSCs into progenitor cells and subsequent maturation into functional macrophages. These IDM cells resembled MDMs both with respect to surface marker expression and phago- as well as efferocytotic function. A statistically robust high-content-imaging assay was developed to quantify the efferocytosis rate of IDMs and MDMs allowing for measurements both in the 384- and 1536-well microplate format. Validating the applicability of the assay, inhibitors of spleen tyrosine kinase (Syk) were shown to modulate efferocytosis in IDMs and MDMs with comparable pharmacology. The miniaturized cellular assay with the upscaled provision of macrophages opens new routes to pharmaceutical drug discovery in the context of efferocytosis-modulating substances.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Macrófagos , Diferenciación Celular , Descubrimiento de Drogas
3.
Am J Respir Cell Mol Biol ; 68(4): 366-380, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36227799

RESUMEN

Profibrotic and prohomeostatic macrophage phenotypes remain ill-defined, both in vivo and in vitro, impeding the successful development of drugs that reprogram macrophages as an attractive therapeutic approach to manage fibrotic disease. The goal of this study was to reveal profibrotic and prohomeostatic macrophage phenotypes that could guide the design of new therapeutic approaches targeting macrophages to treat fibrotic disease. This study used nintedanib, a broad kinase inhibitor approved for idiopathic pulmonary fibrosis, to dissect lung macrophage phenotypes during fibrosis-linked inflammation by combining in vivo and in vitro bulk and single-cell RNA-sequencing approaches. In the bleomycin model, nintedanib drove the expression of IL-4/IL-13-associated genes important for tissue regeneration and repair at early and late time points in lung macrophages. These findings were replicated in vitro in mouse primary bone marrow-derived macrophages exposed to IL-4/IL-13 and nintedanib. In addition, nintedanib promoted the expression of IL-4/IL-13 pathway genes in human macrophages in vitro. The molecular mechanism was connected to inhibition of the colony stimulating factor 1 (CSF1) receptor in both human and mouse macrophages. Moreover, nintedanib counterbalanced the effects of TNF on IL-4/IL-13 in macrophages to promote expression of IL-4/IL-13-regulated tissue repair genes in fibrotic contexts in vivo and in vitro. This study demonstrates that one of nintedanib's antifibrotic mechanisms is to increase IL-4 signaling in macrophages through inhibition of the CSF1 receptor, resulting in the promotion of tissue repair phenotypes.


Asunto(s)
Fibrosis Pulmonar Idiopática , Indoles , Macrófagos , Indoles/farmacología , Animales , Ratones , Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Interleucina-4/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
4.
Sci Rep ; 12(1): 12190, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842487

RESUMEN

We have previously established a novel mouse model of lung fibrosis based on Adeno-associated virus (AAV)-mediated pulmonary overexpression of TGFß1. Here, we provide an in-depth characterization of phenotypic and transcriptomic changes (mRNA and miRNA) in a head-to-head comparison with Bleomycin-induced lung injury over a 4-week disease course. The analyses delineate the temporal state of model-specific and commonly altered pathways, thereby providing detailed insights into the processes underlying disease development. They further guide appropriate model selection as well as interventional study design. Overall, Bleomycin-induced fibrosis resembles a biphasic process of acute inflammation and subsequent transition into fibrosis (with partial resolution), whereas the TGFß1-driven model is characterized by pronounced and persistent fibrosis with concomitant inflammation and an equally complex disease phenotype as observed upon Bleomycin instillation. Finally, based on an integrative approach combining lung function data, mRNA/miRNA profiles, their correlation and miRNA target predictions, we identify putative drug targets and miRNAs to be explored as therapeutic candidates for fibrotic diseases. Taken together, we provide a comprehensive analysis and rich data resource based on RNA-sequencing, along with a strategy for transcriptome-phenotype coupling. The results will be of value for TGFß research, drug discovery and biomarker identification in progressive fibrosing interstitial lung diseases.


Asunto(s)
MicroARNs , Fibrosis Pulmonar , Animales , Bleomicina/efectos adversos , Bleomicina/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Fibrosis , Perfilación de la Expresión Génica , Inflamación/patología , Pulmón/patología , Ratones , MicroARNs/metabolismo , Fenotipo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , ARN Mensajero/metabolismo
5.
Sci Rep ; 11(1): 17028, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426605

RESUMEN

In order to circumvent the limited access and donor variability of human primary alveolar cells, directed differentiation of human pluripotent stem cells (hiPSCs) into alveolar-like cells, provides a promising tool for respiratory disease modeling and drug discovery assays. In this work, a unique, miniaturized 96-Transwell microplate system is described where hiPSC-derived alveolar-like cells were cultured at an air-liquid interface (ALI). To this end, hiPSCs were differentiated into lung epithelial progenitor cells (LPCs) and subsequently matured into a functional alveolar type 2 (AT2)-like epithelium with monolayer-like morphology. AT2-like cells cultured at the physiological ALI conditions displayed characteristics of AT2 cells with classical alveolar surfactant protein expressions and lamellar-body like structures. The integrity of the epithelial barriers between the AT2-like cells was confirmed by applying a custom-made device for 96-parallelized transepithelial electric resistance (TEER) measurements. In order to generate an IPF disease-like phenotype in vitro, the functional AT2-like cells were stimulated with cytokines and growth factors present in the alveolar tissue of IPF patients. The cytokines stimulated the secretion of pro-fibrotic biomarker proteins both on the mRNA (messenger ribonucleic acid) and protein level. Thus, the hiPSC-derived and cellular model system enables the recapitulation of certain IPF hallmarks, while paving the route towards a miniaturized medium throughput approach of pharmaceutical drug discovery.


Asunto(s)
Aire , Técnicas de Cultivo de Célula , Células Madre Pluripotentes Inducidas/citología , Miniaturización , Modelos Biológicos , Alveolos Pulmonares/citología , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/ultraestructura , Fenotipo , Alveolos Pulmonares/ultraestructura , Fibrosis Pulmonar/patología , Transcripción Genética
6.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299265

RESUMEN

Smoking is a major risk factor for chronic obstructive pulmonary disease (COPD) and causes remodeling of the small airways. However, the exact smoke-induced effects on the different types of small airway epithelial cells (SAECs) are poorly understood. Here, using air-liquid interface (ALI) cultures, single-cell RNA-sequencing reveals previously unrecognized transcriptional heterogeneity within the small airway epithelium and cell type-specific effects upon acute and chronic cigarette smoke exposure. Smoke triggers detoxification and inflammatory responses and aberrantly activates and alters basal cell differentiation. This results in an increase of inflammatory basal-to-secretory cell intermediates and, particularly after chronic smoke exposure, a massive expansion of a rare inflammatory and squamous metaplasia associated KRT6A+ basal cell state and an altered secretory cell landscape. ALI cultures originating from healthy non-smokers and COPD smokers show similar responses to cigarette smoke exposure, although an increased pro-inflammatory profile is conserved in the latter. Taken together, the in vitro models provide high-resolution insights into the smoke-induced remodeling of the small airways resembling the pathological processes in COPD airways. The data may also help to better understand other lung diseases including COVID-19, as the data reflect the smoke-dependent variable induction of SARS-CoV-2 entry factors across SAEC populations.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Fumar Cigarrillos/efectos adversos , Células Epiteliales/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Fumar Cigarrillos/metabolismo , Células Epiteliales/efectos de los fármacos , Humanos , Neoplasias Basocelulares/metabolismo , Cultivo Primario de Células , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Humo , Fumar/efectos adversos , Fumar/metabolismo
7.
Commun Biol ; 4(1): 172, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558616

RESUMEN

IL-36, which belongs to the IL-1 superfamily, is increasingly linked to neutrophilic inflammation. Here, we combined in vivo and in vitro approaches using primary mouse and human cells, as well as, acute and chronic mouse models of lung inflammation to provide mechanistic insight into the intercellular signaling pathways and mechanisms through which IL-36 promotes lung inflammation. IL-36 receptor deficient mice exposed to cigarette smoke or cigarette smoke and H1N1 influenza virus had attenuated lung inflammation compared with wild-type controls. We identified neutrophils as a source of IL-36 and show that IL-36 is a key upstream amplifier of lung inflammation by promoting activation of neutrophils, macrophages and fibroblasts through cooperation with GM-CSF and the viral mimic poly(I:C). Our data implicate IL-36, independent of other IL-1 family members, as a key upstream amplifier of neutrophilic lung inflammation, providing a rationale for targeting IL-36 to improve treatment of a variety of neutrophilic lung diseases.


Asunto(s)
Interleucina-1/metabolismo , Pulmón/metabolismo , Activación Neutrófila , Neutrófilos/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Neumonía Viral/metabolismo , Receptores de Interleucina-1/metabolismo , Animales , Células Cultivadas , Fumar Cigarrillos , Modelos Animales de Enfermedad , Femenino , Fibroblastos/inmunología , Fibroblastos/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Interleucina-1/genética , Pulmón/inmunología , Pulmón/virología , Activación de Macrófagos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/virología , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Neumonía Viral/genética , Neumonía Viral/inmunología , Neumonía Viral/virología , Receptores de Interleucina-1/genética , Transducción de Señal
8.
Sci Rep ; 10(1): 13022, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32747751

RESUMEN

In order to overcome the challenges associated with a limited number of airway epithelial cells that can be obtained from clinical sampling and their restrained capacity to divide ex vivo, miniaturization of respiratory drug discovery assays is of pivotal importance. Thus, a 96-well microplate system was developed where primary human small airway epithelial (hSAE) cells were cultured at an air-liquid interface (ALI). After four weeks of ALI culture, a pseudostratified epithelium containing basal, club, goblet and ciliated cells was produced. The 96-well ALI cultures displayed a cellular composition, ciliary beating frequency, and intercellular tight junctions similar to 24-well conditions. A novel custom-made device for 96-parallelized transepithelial electric resistance (TEER) measurements, together with dextran permeability measurements, confirmed that the 96-well culture developed a tight barrier function during ALI differentiation. 96-well hSAE cultures were responsive to transforming growth factor ß1 (TGF-ß1) and tumor necrosis factor α (TNF-α) in a concentration dependent manner. Thus, the miniaturized cellular model system enables the recapitulation of a physiologically responsive, differentiated small airway epithelium, and a robotic integration provides a medium throughput approach towards pharmaceutical drug discovery, for instance, in respect of fibrotic distal airway/lung diseases.


Asunto(s)
Bronquiolos/citología , Células Epiteliales/citología , Miniaturización/instrumentación , Miniaturización/métodos , Modelos Biológicos , Aire , Automatización , Biomarcadores/metabolismo , Células Cultivadas , Fibrosis , Humanos , Mucosa Respiratoria/citología
9.
Crohns Colitis 360 ; 2(1): otaa003, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32551441

RESUMEN

BACKGROUND: Short non-coding microRNAs (miRNAs) are involved in various cellular processes during disease progression of Crohn's disease (CD) and remarkably stable in feces, which make them attractive biomarker candidates for reflecting intestinal inflammatory processes. Here we investigated the potential of fecal miRNAs as noninvasive and translational CD biomarkers. METHODS: MiRNAs were screened in feces of 52 patients with CD and 15 healthy controls using RNA sequencing and the results were confirmed by PCR. The relationship between fecal miRNA levels and the clinical CD activity index (CDAI) or CD endoscopic index of severity (CDEIS) was explored, respectively. Additionally, fecal miRNAs were investigated in dextran sodium sulfate, adoptive T-cell transfer, and Helicobacter typhlonius/stress-induced murine colitis models using the NanoString platform. RESULTS: Nine miRNAs (miR-15a-5p, miR-16-5p, miR-128-3p, miR-142-5p, miR-24-3p, miR-27a-3p, miR-223-3p, miR-223-5p, and miR-3074-5p) were significantly (adj. P < 0.05, >3-fold) increased whereas 8 miRNAs (miR-10a-5p, miR-10b-5p, miR-141-3p, miR-192-5p, miR-200a-3p, miR-375, miR-378a-3p, and let-7g-5p) were significantly decreased in CD. MiR-192-5p, miR-375, and miR-141-3p correlated (P < 0.05) with both CDAI and CDEIS whereas miR-15a-5p correlated only with CDEIS. Deregulated expression of miR-223-3p, miR-16-5p, miR-15a-5p, miR-24-3p, and miR-200a-3p was also observed in murine models. The identified altered fecal miRNA levels reflect pathophysiological mechanisms in CD, such as Th1 and Th17 inflammation, autophagy, and fibrotic processes. CONCLUSIONS: Our translational study assessed global fecal miRNA changes of patients with CD and relevant preclinical models. These fecal miRNAs show promise as translational and clinically useful noninvasive biomarkers for mechanistic investigation of intestinal pathophysiology, including monitoring of disease progression.

10.
Sci Rep ; 10(1): 3373, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32099009

RESUMEN

Dipeptidyl peptidase 4 inhibitors and angiotensin II receptor blockers attenuate chronic kidney disease progression in experimental diabetic and non-diabetic nephropathy in a blood pressure and glucose independent manner, but the exact molecular mechanisms remain unclear. MicroRNAs (miRNAs) are short, non-coding RNA species that are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of nephropathy. miRNAs are present in urine in a remarkably stable form, packaged in extracellular vesicles. Here, we investigated linagliptin and telmisartan induced effects on renal and urinary exosomal miRNA expression in 5/6 nephrectomized rats. In the present study, renal miRNA profiling was conducted using the Nanostring nCounter technology and mRNA profiling using RNA sequencing from the following groups of rats: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus telmisartan; and 5/6 nephrectomy plus linagliptin. TaqMan Array miRNA Cards were used to evaluate which of the deregulated miRNAs in the kidney are present in urinary exosomes. In kidneys from 5/6 nephrectomized rats, the expression of 13 miRNAs was significantly increased (>1.5-fold, P < 0.05), whereas the expression of 7 miRNAs was significantly decreased (>1.5-fold, P < 0.05). Most of the deregulated miRNA species are implicated in endothelial-to-mesenchymal transition and inflammatory processes. Both telmisartan and linagliptin suppressed the induction of pro-fibrotic miRNAs, such as miR-199a-3p, and restored levels of anti-fibrotic miR-29c. In conclusion, the linagliptin and telmisartan-induced restorative effects on miR-29c expression were reflected in urinary exosomes, suggesting that miRNA profiling of urinary exosomes might be used as a biomarker for CKD progression and monitoring of treatment effects.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Exosomas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/metabolismo , Linagliptina/farmacología , MicroARNs/metabolismo , Telmisartán/farmacología , Animales , Riñón/patología , Riñón/cirugía , Nefrectomía , Análisis de Componente Principal , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Sistema Urinario/metabolismo
11.
ALTEX ; 37(1): 164, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31960940

RESUMEN

In this manuscript, which appeared in ALTEX (2019), 36(4), 682- 699, doi:10.14573/altex.1909271 , the affiliation of Hennicke Kamp should be Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany. Further, the reference to an article by Bal-Price et al. (2015) should have the following doi:10.1007/s00204-015-1464-2 .

12.
ALTEX ; 36(4): 682-699, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31658359

RESUMEN

Only few cell-based test methods are described by Organisation for Economic Co-operation and Development (OECD) test guidelines or other regulatory references (e.g., the European Pharmacopoeia). The majority of toxicity tests still falls into the category of non-guideline methods. Data from these tests may nevertheless be used to support regulatory decisions or to guide strategies to assess compounds (e.g., drugs, agrochemicals) during research and development if they fulfill basic requirements concerning their relevance, reproducibility and predictivity. Only a method description of sufficient clarity and detail allows interpretation and use of the data. To guide regulators faced with increasing amounts of data from non-guideline studies, the OECD formulated Guidance Document 211 (GD211) on method documentation for the purpose of safety assessment. As GD211 is targeted mainly at regulators, it leaves scientists less familiar with regulation uncertain as to what level of detail is required and how individual questions should be answered. Moreover, little attention was given to the description of the test system (i.e., cell culture) and the steps leading to it being established in the guidance. To address these issues, an annotated toxicity test method template (ToxTemp) was developed (i) to fulfill all requirements of GD211, (ii) to guide the user concerning the types of answers and detail of information required, (iii) to include acceptance criteria for test elements, and (iv) to define the cells sufficiently and transparently. The fully annotated ToxTemp is provided here, together with reference to a database containing exemplary descriptions of more than 20 cell-based tests.


Asunto(s)
Pruebas de Toxicidad/métodos , Animales , Estudios de Evaluación como Asunto , Humanos , Organización para la Cooperación y el Desarrollo Económico , Reproducibilidad de los Resultados , Proyectos de Investigación , Pruebas de Toxicidad/normas
13.
Sci Rep ; 9(1): 10699, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337793

RESUMEN

Combining single-cell RNA sequencing (scRNA-seq) with upstream cell preservation procedures such as cryopreservation or methanol fixation has recently become more common. By separating cell handling and preparation, from downstream library generation, scRNA-seq workflows are more flexible and manageable. However, the inherent transcriptomic changes associated with cell preservation and how they may bias further downstream analysis remain unknown. Here, we present a side-by-side droplet-based scRNA-seq analysis, comparing the gold standard - fresh cells - to three different cell preservation workflows: dimethyl sulfoxide based cryopreservation, methanol fixation and CellCover reagent. Cryopreservation proved to be the most robust protocol, maximizing both cell integrity and low background ambient RNA. Importantly, gene expression profiles from fresh cells correlated most with those of cryopreserved cells. Such similarities were consistently observed across the tested cell lines (R ≥ 0.97), monocyte-derived macrophages (R = 0.97) and immune cells (R = 0.99). In contrast, both methanol fixation and CellCover preservation showed an increased ambient RNA background and an overall lower gene expression correlation to fresh cells. Thus, our results demonstrate the superiority of cryopreservation over other cell preservation methods. We expect our comparative study to provide single-cell omics researchers invaluable support when integrating cell preservation into their scRNA-seq studies.


Asunto(s)
Criopreservación/métodos , Dimetilsulfóxido , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Humanos
14.
Methods Mol Biol ; 1994: 101-115, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31124108

RESUMEN

In drug discovery, there is an increasing demand for more physiological in vitro models that recapitulate the disease situation in patients. Human induced pluripotent stem (hiPS) cell-derived model cells could serve this purpose. To date, several directed differentiation approaches have been described to generate definitive endoderm (DE) from hiPS cells, but protocols suitable for drug development and high-throughput screening (HTS) have not been reported yet. In this work, a large-scale expansion of hiPS cells for high-throughput adaption is presented and an optimized stepwise differentiation of hiPS cells into DE cells is described. The produced DE cells were demonstrated to express classical DE markers on the gene expression and protein level. The here described DE cells are multipotent progenitors and act as starting points for a broad spectrum of endodermal model cells in HTS and other areas of drug discovery.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Endodermo/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Descubrimiento de Drogas , Endodermo/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo
15.
PLoS One ; 12(9): e0184386, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28863189

RESUMEN

Inappropriate repair responses to pulmonary epithelial injury have been linked to perturbation of epithelial barrier function and airway remodelling in a number of respiratory diseases, including chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. We developed an in vitro mechanical scratch injury model in air-liquid interface differentiated primary human small airway epithelial cells that recapitulates many of the characteristics observed during epithelial wound injury in both human tissue and small animal models. Wound closure was initially associated with de-differentiation of the differentiated apical cells and rapid migration into the wound site, followed by proliferation of apical cells behind the wound edge, together with increases in FAK expression, fibronectin and reduction in PAI-1 which collectively facilitate cell motility and extracellular matrix deposition. Macrophages are intimately involved in wound repair so we sought to investigate the role of macrophage sub-types on this process in a novel primary human co-culture model. M1 macrophages promoted FAK expression and both M1 and M2 macrophages promoted epithelial de-differentiation. Interestingly, M2a macrophages inhibited both proliferation and fibronectin expression, possibly via the retinoic acid pathway, whereas M2b and M2c macrophages prevented fibronectin deposition, possibly via MMP expression. Collectively these data highlight the complex nature of epithelial wound closure, the differential impact of macrophage sub-types on this process, and the heterogenic and non-delineated function of these macrophages.


Asunto(s)
Epitelio/metabolismo , Macrófagos/citología , Cicatrización de Heridas/fisiología , Remodelación de las Vías Aéreas (Respiratorias) , Bronquios/citología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Matriz Extracelular , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Persona de Mediana Edad , Monocitos/citología , Fenotipo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo
16.
Br J Pharmacol ; 174(21): 3848-3864, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28810065

RESUMEN

BACKGROUND AND PURPOSE: Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by excessive fibroblast activation ultimately leading to scarring of the lungs. Although, the activation of ß2 -adrenoceptors (ß2 -AR) has been shown to inhibit pro-fibrotic events primarily in cell lines, the role of ß2 -adrenoceptor agonists has not yet been fully characterized. The aim of our study was to explore the anti-fibrotic activity of the long-acting ß2 -adrenoceptor agonist olodaterol in primary human lung fibroblasts (HLF) and in murine models of pulmonary fibrosis. EXPERIMENTAL APPROACH: We assessed the activity of olodaterol to inhibit various pro-fibrotic mechanisms, induced by different pro-fibrotic mediators, in primary HLF from control donors and patients with IPF (IPF-LF). The in vivo anti-fibrotic activity of olodaterol, given once daily by inhalation in either a preventive or therapeutic treatment regimen, was explored in murine models of lung fibrosis induced by either bleomycin or the overexpression of TGF-ß1. KEY RESULTS: In both HLF and IPF-LF, olodaterol attenuated TGF-ß-induced expression of α-smooth muscle actin, fibronectin and endothelin-1 (ET-1), FGF- and PDGF-induced motility and proliferation and TGF-ß/ET-1-induced contraction. In vivo olodaterol significantly attenuated the bleomycin-induced increase in lung weight, reduced bronchoalveolar lavage cell counts and inhibited release of pro-fibrotic mediators (TGF-ß, MMP-9 and tissue inhibitor of metalloproteinase-1). Forced vital capacity was increased only with the preventive treatment regimen. In the TGF-ß-overexpressing model, olodaterol additionally reduced the Col3A1 mRNA expression. CONCLUSION AND IMPLICATIONS: Olodaterol showed anti-fibrotic properties in primary HLF from control and IPF patients and in murine models of lung fibrosis.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Benzoxazinas/farmacología , Broncodilatadores/farmacología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Administración por Inhalación , Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Animales , Benzoxazinas/administración & dosificación , Broncodilatadores/administración & dosificación , Línea Celular , Colágeno Tipo III/genética , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
17.
Mol Ther ; 23(10): 1582-91, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26137851

RESUMEN

Cytotoxicity of transgenes carried by adeno-associated virus (AAV) vectors might be desired, for instance, in oncolytic virotherapy or occur unexpectedly in exploratory research when studying sparsely characterized genes. To date, most AAV-based studies use constitutively active promoters (e.g., the CMV promoter) to drive transgene expression, which often hampers efficient AAV production due to cytotoxic, antiproliferative, or unknown transgene effects interfering with producer cell performance. Therefore, we explored artificial riboswitches as novel tools to control transgene expression during AAV production in mammalian cells. Our results demonstrate that the guanine-responsive GuaM8HDV aptazyme efficiently attenuates transgene expression and associated detrimental effects, thereby boosting AAV vector yields up to 23-fold after a single addition of guanine. Importantly, riboswitch-harboring vectors preserved their ability to express functional transgene at high levels in the absence of ligand, as demonstrated in a mouse model of AAV-TGFß1-induced pulmonary fibrosis. Thus, our study provides the first application-ready biotechnological system-based on aptazymes, which should enable high viral vector yields largely independent of the transgene used. Moreover, the RNA-intrinsic, small-molecule regulatable mode of action of riboswitches provides key advantages over conventional transcription factor-based regulatory systems. Therefore, such riboswitch vectors might be ultimately applied to temporally control therapeutic transgene expression in vivo.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Riboswitch , Transgenes , Replicación Viral , Animales , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Orden Génico , Genes Reporteros , Guanina/metabolismo , Guanina/farmacología , Células HEK293 , Humanos , Ligandos , Ratones , Transducción Genética , Replicación Viral/efectos de los fármacos
18.
Drug Discov Today ; 20(11): 1317-27, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26151479

RESUMEN

The development of novel drugs for the treatment of atherosclerosis faces many challenges, particularly caused by the need for large and costly outcome trials. When predictive biochemical biomarkers are not available, clinical imaging data can serve as intermediate Phase II endpoints to demonstrate mechanistic and anti-atherosclerotic activity of new compounds. These data can support risk mitigation before continuing development in large Phase III outcome trials. Imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound [intima-media thickness (IMT) and intravascular ultrasound (IVUS)] can provide detailed information on vascular plaque volume and morphology, whereas functional changes can potentially be captured by positron emission tomography (PET) techniques in the vessel wall. We will review the application and operational aspects of clinical imaging methods and endpoints used in interventional atherosclerosis trials.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Diagnóstico por Imagen/métodos , Diseño de Fármacos , Aterosclerosis/diagnóstico , Aterosclerosis/patología , Ensayos Clínicos como Asunto/métodos , Determinación de Punto Final , Humanos , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Tomografía de Emisión de Positrones/métodos
19.
Am J Respir Cell Mol Biol ; 53(3): 291-302, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25845025

RESUMEN

Viral vectors have been applied successfully to generate disease-related animal models and to functionally characterize target genes in vivo. However, broader application is still limited by complex vector production, biosafety requirements, and vector-mediated immunogenic responses, possibly interfering with disease-relevant pathways. Here, we describe adeno-associated virus (AAV) variant 6.2 as an ideal vector for lung delivery in mice, overcoming most of the aforementioned limitations. In a proof-of-concept study using AAV6.2 vectors expressing IL-13 and transforming growth factor-ß1 (TGF-ß1), we were able to induce hallmarks of severe asthma and pulmonary fibrosis, respectively. Phenotypic characterization and deep sequencing analysis of the AAV-IL-13 asthma model revealed a characteristic disease signature. Furthermore, suitability of the model for compound testing was also demonstrated by pharmacological intervention studies using an anti-IL-13 antibody and dexamethasone. Similarly, the AAV-TGF-ß1 fibrosis model showed several disease-like pathophenotypes monitored by micro-computed tomography imaging and lung function measurement. Most importantly, analyses using stuffer control vectors demonstrated that in contrast to a common adenovirus-5 vector, AAV6.2 vectors did not induce any measurable inflammation and therefore carry a lower risk of altering relevant readouts. In conclusion, we propose AAV6.2 as an ideal vector system for the functional characterization of target genes in the context of pulmonary diseases in mice.


Asunto(s)
Asma/inmunología , Dependovirus/genética , Fibrosis Pulmonar Idiopática/inmunología , Animales , Asma/genética , Asma/metabolismo , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Interleucina-13/biosíntesis , Interleucina-13/genética , Ratones Endogámicos BALB C , Transducción Genética , Factor de Crecimiento Transformador beta1/biosíntesis , Factor de Crecimiento Transformador beta1/genética
20.
PLoS One ; 9(3): e91223, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24618687

RESUMEN

Severe asthma is characterised by persistent inflammation, hyperreactivity and remodeling of the airways. No efficient treatment is available, this is particularly the case for steroid resistant phenotypes. Our aim therefore was to develop a preclinical model showing characteristics of severe human asthma including steroid insensitivity. Mice were first sensitized with ovalbumin, extracts of cockroach or house dust mite followed by a challenge period of seven weeks. Further to this, an additional group of mice was sensitized with all three allergens and then challenged with allergen alternating weekly between allergens. All three allergens applied separately to the mice induced comparably strong Th2-type airway inflammation, airway hyperreactivity and airway remodeling, which was characterised by fibrosis and increased smooth muscle thickness. In contrast, application of all three allergens together resulted in a greater Th2 response and increased airway hyperreactivity and a stronger albeit not significant remodeling phenotype compared to using HDM or CRA. In this triple allergen model dexamethasone application, during the last 4 weeks of challenge, showed no suppressive effects on any of these parameters in this model. In contrast, both TLR7 agonist resiquimod and TLR9 agonist CpG-ODN reduced allergen-specific IgE, eosinophils, and collagen I in the lungs. The TLR9 agonist also reduced IL-4 and IL-5 whilst increasing IFN-γ and strongly IL-10 levels in the lungs, effects not seen with the TLR7 agonist. However, neither TLR agonist had any effect on airway hyperreactivity and airway smooth muscle mass. In conclusion we have developed a severe asthma model, which is steroid resistant and only partially sensitive to TLR7 and TLR9 agonist treatment. This model may be particular useful to test new potential therapeutics aiming at treating steroid resistant asthma in humans and investigating the underlying mechanisms responsible for steroid insensitivity.


Asunto(s)
Alérgenos/inmunología , Asma/inmunología , Asma/metabolismo , Dexametasona/farmacología , Resistencia a Medicamentos , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 9/agonistas , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Alérgenos/administración & dosificación , Animales , Asma/tratamiento farmacológico , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/metabolismo , Dexametasona/administración & dosificación , Modelos Animales de Enfermedad , Eosinófilos/inmunología , Eosinófilos/patología , Femenino , Inmunoglobulina E/inmunología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ovalbúmina/efectos adversos , Ovalbúmina/inmunología , Fenotipo , Células Th2/inmunología , Células Th2/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 9/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA