Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuron ; 111(19): 3028-3040.e6, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37473758

RESUMEN

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Síndrome del Cromosoma X Frágil , Animales , Ratones , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Neuronas/metabolismo , Fenotipo , Ratones Noqueados , Modelos Animales de Enfermedad
2.
Curr Res Neurobiol ; 5: 100094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416094

RESUMEN

A growing body of evidence has implicated progranulin in neurodevelopment and indicated that aberrant progranulin expression may be involved in neurodevelopmental disease. Specifically, increased progranulin expression in the prefrontal cortex has been suggested to be pathologically relevant in male Fmr1 knockout (Fmr1 KO) mice, a mouse model of Fragile X Syndrome (FXS). Further investigation into the role of progranulin in FXS is warranted to determine if therapies that reduce progranulin expression represent a viable strategy for treating patients with FXS. Several key knowledge gaps remain. The mechanism of increased progranulin expression in Fmr1 KO mice is poorly understood and the extent of progranulin's involvement in FXS-like phenotypes in Fmr1 KO mice has been incompletely explored. To this end, we have performed a thorough characterization of progranulin expression in Fmr1 KO mice. We find that the phenomenon of increased progranulin expression is post-translational and tissue-specific. We also demonstrate for the first time an association between progranulin mRNA and FMRP, suggesting that progranulin mRNA is an FMRP target. Subsequently, we show that progranulin over-expression in Fmr1 wild-type mice causes reduced repetitive behaviour engagement in females and mild hyperactivity in males but is largely insufficient to recapitulate FXS-associated behavioural, morphological, and electrophysiological abnormalities. Lastly, we determine that genetic reduction of progranulin expression on an Fmr1 KO background reduces macroorchidism but does not alter other FXS-associated behaviours or biochemical phenotypes.

3.
Brain ; 146(5): 2175-2190, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36315645

RESUMEN

MAPK interacting protein kinases 1 and 2 (Mnk1/2) regulate a plethora of functions, presumably via phosphorylation of their best characterized substrate, eukaryotic translation initiation factor 4E (eIF4E) on Ser209. Here, we show that, whereas deletion of Mnk1/2 (Mnk double knockout) impairs synaptic plasticity and memory in mice, ablation of phospho-eIF4E (Ser209) does not affect these processes, suggesting that Mnk1/2 possess additional downstream effectors in the brain. Translational profiling revealed only a small overlap between the Mnk1/2- and phospho-eIF4E(Ser209)-regulated translatome. We identified the synaptic Ras GTPase activating protein 1 (Syngap1), encoded by a syndromic autism gene, as a downstream target of Mnk1 because Syngap1 immunoprecipitated with Mnk1 and showed reduced phosphorylation (S788) in Mnk double knockout mice. Knockdown of Syngap1 reversed memory deficits in Mnk double knockout mice and pharmacological inhibition of Mnks rescued autism-related phenotypes in Syngap1+/- mice. Thus, Syngap1 is a downstream effector of Mnk1, and the Mnks-Syngap1 axis regulates memory formation and autism-related behaviours.


Asunto(s)
Trastorno Autístico , Factor 4E Eucariótico de Iniciación , Animales , Ratones , Factor 4E Eucariótico de Iniciación/genética , Ratones Noqueados , Fosforilación , Proteínas Activadoras de ras GTPasa/metabolismo
4.
Stem Cell Reports ; 16(7): 1749-1762, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34214487

RESUMEN

Mutations in HPRT1, a gene encoding a rate-limiting enzyme for purine salvage, cause Lesch-Nyhan disease which is characterized by self-injury and motor impairments. We leveraged stem cell and genetic engineering technologies to model the disease in isogenic and patient-derived forebrain and midbrain cell types. Dopaminergic progenitor cells deficient in HPRT showed decreased intensity of all developmental cell-fate markers measured. Metabolic analyses revealed significant loss of all purine derivatives, except hypoxanthine, and impaired glycolysis and oxidative phosphorylation. real-time glucose tracing demonstrated increased shunting to the pentose phosphate pathway for de novo purine synthesis at the expense of ATP production. Purine depletion in dopaminergic progenitor cells resulted in loss of RHEB, impairing mTORC1 activation. These data demonstrate dopaminergic-specific effects of purine salvage deficiency and unexpectedly reveal that dopaminergic progenitor cells are programmed to a high-energy state prior to higher energy demands of terminally differentiated cells.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Metabolismo Energético , Síndrome de Lesch-Nyhan/metabolismo , Síndrome de Lesch-Nyhan/patología , Mesencéfalo/patología , Biomarcadores/metabolismo , Linaje de la Célula , Corteza Cerebral/patología , Glucosa/metabolismo , Glucólisis , Humanos , Hipoxantina Fosforribosiltransferasa/deficiencia , Síndrome de Lesch-Nyhan/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células-Madre Neurales/metabolismo , Fosforilación Oxidativa , Vía de Pentosa Fosfato , Purinas/metabolismo
5.
Cell Rep ; 35(4): 109036, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33910008

RESUMEN

Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.


Asunto(s)
Trastorno Autístico/genética , Proteínas Portadoras/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas/genética , Células de Purkinje/metabolismo , Memoria Espacial/fisiología , Animales , Humanos , Ratones
6.
Proc Natl Acad Sci U S A ; 116(36): 18060-18067, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427534

RESUMEN

Translational control plays a key role in regulation of neuronal activity and behavior. Deletion of the translational repressor 4E-BP2 in mice alters excitatory and inhibitory synaptic functions, engendering autistic-like behaviors. The contribution of 4E-BP2-dependent translational control in excitatory and inhibitory neurons and astrocytic cells to these behaviors remains unknown. To investigate this, we generated cell-type-specific conditional 4E-BP2 knockout mice and tested them for the salient features of autism, including repetitive stereotyped behaviors (self-grooming and marble burying), sociability (3-chamber social and direct social interaction tests), and communication (ultrasonic vocalizations in pups). We found that deletion of 4E-BP2 in GABAergic inhibitory neurons, defined by Gad2, resulted in impairments in social interaction and vocal communication. In contrast, deletion of 4E-BP2 in forebrain glutamatergic excitatory neurons, defined by Camk2a, or in astrocytes, defined by Gfap, failed to cause autistic-like behavioral abnormalities. Taken together, we provide evidence for an inhibitory-cell-specific role of 4E-BP2 in engendering autism-related behaviors.


Asunto(s)
Trastorno Autístico/metabolismo , Conducta Animal , Factores Eucarióticos de Iniciación/deficiencia , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Biosíntesis de Proteínas , Animales , Astrocitos/metabolismo , Astrocitos/patología , Trastorno Autístico/genética , Trastorno Autístico/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas GABAérgicas/patología , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Interneuronas/patología , Ratones , Ratones Noqueados
7.
Annu Rev Med ; 70: 167-181, 2019 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-30365357

RESUMEN

Fragile X syndrome (FXS) is the most frequent inherited form of intellectual disability and autism spectrum disorder. Loss of the fragile X mental retardation protein, FMRP, engenders molecular, behavioral, and cognitive deficits in FXS patients. Experiments using different animal models advanced our knowledge of the pathophysiology of FXS and led to the discovery of many targets for drug treatments. In this review, we discuss the potential of metformin, an antidiabetic drug approved by the US Food and Drug Administration, to correct core symptoms of FXS and other neurological disorders in humans. We summarize its mechanisms of action in different animal and cellular models and human diseases.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Metformina/uso terapéutico , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Animales , Trastorno Autístico/diagnóstico , Trastorno Autístico/tratamiento farmacológico , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Humanos , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Pronóstico , Serina-Treonina Quinasas TOR/genética , Resultado del Tratamiento
8.
J Neurosci ; 38(8): 2118-2133, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29367404

RESUMEN

The MAPK/ERK (mitogen-activated protein kinases/extracellular signal-regulated kinase) pathway is a cardinal regulator of synaptic plasticity, learning, and memory in the hippocampus. One of major endpoints of this signaling cascade is the 5' mRNA cap binding protein eIF4E (eukaryotic Initiation Factor 4E), which is phosphorylated on Ser 209 by MNK (MAPK-interacting protein kinases) and controls mRNA translation. The precise role of phospho-eIF4E in the brain is yet to be determined. Herein, we demonstrate that ablation of eIF4E phosphorylation in male mice (4Eki mice) does not impair long-term spatial or contextual fear memory, or the late phase of LTP. Using unbiased translational profiling in mouse brain, we show that phospho-eIF4E differentially regulates the translation of a subset of mRNAs linked to inflammation, the extracellular matrix, pituitary hormones, and the serotonin pathway. Consequently, 4Eki male mice display exaggerated inflammatory responses and reduced levels of serotonin, concomitant with depression and anxiety-like behaviors. Remarkably, eIF4E phosphorylation is required for the chronic antidepressant action of the selective serotonin reuptake inhibitor fluoxetine. Finally, we propose a novel phospho-eIF4E-dependent translational control mechanism in the brain, via the GAIT complex (gamma IFN activated inhibitor of translation). In summary, our work proposes a novel translational control mechanism involved in the regulation of inflammation and depression, which could be exploited to design novel therapeutics.SIGNIFICANCE STATEMENT We demonstrate that downstream of the MAPK (mitogen-activated protein kinase) pathway, eukaryotic Initiation Factor 4E (eIF4E) Ser209 phosphorylation is not required for classical forms of hippocampal LTP and memory. We reveal a novel role for eIF4E phosphorylation in inflammatory responses and depression-like behaviors. eIF4E phosphorylation is required for the chronic action of antidepressants, such as fluoxetine in mice. These phenotypes are accompanied by selective translation of extracellular matrix, pituitary hormones, and serotonin pathway genes, in eIF4E phospho-mutant mice. We also describe a previously unidentified translational control mechanism in the brain, whereby eIF4E phosphorylation is required for inhibiting the translation of gamma IFN activated inhibitor of translation element-containing mRNAs. These findings can be used to design novel therapeutics for depression.


Asunto(s)
Depresión/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Inflamación/metabolismo , Biosíntesis de Proteínas/fisiología , Animales , Depresión/fisiopatología , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación
9.
Nat Rev Dis Primers ; 3: 17065, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28960184

RESUMEN

Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures. FXS is a trinucleotide repeat disorder, in which >200 repeats of the CGG motif in FMR1 leads to silencing of the gene and the consequent loss of its product, fragile X mental retardation 1 protein (FMRP). FMRP has a central role in gene expression and regulates the translation of potentially hundreds of mRNAs, many of which are involved in the development and maintenance of neuronal synaptic connections. Indeed, disturbances in neuroplasticity is a key finding in FXS animal models, and an imbalance in inhibitory and excitatory neuronal circuits is believed to underlie many of the clinical manifestations of this disorder. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention, some of which have already moved into clinical trials or clinical practice.


Asunto(s)
Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/terapia , Humanos
10.
PLoS One ; 12(5): e0176295, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467439

RESUMEN

Neurons in anterior cingulate cortex (aCC) project to dorsomedial striatum (DMS) as part of a corticostriatal circuit with putative roles in learning and other cognitive functions. In the present study, the spatial-cognitive importance of aCC and DMS was assessed in the hidden-platform version of the Morris water maze (MWM). Brain lesion experiments that focused on areas of connectivity between these regions indicated their involvement in spatial cognition. MWM learning curves were markedly delayed in DMS-lesioned mice in the absence of other major functional impairments, whereas there was a more subtle, but still significant influence of aCC lesions. Lesioned mice displayed impaired abilities to use spatial search strategies, increased thigmotaxic swimming, and decreased searching in the proximity of the escape platform. Additionally, aCC and DMS activity was compared in mice between the early acquisition phase (2 and 3 days of training) and the over-trained high-proficiency phase (after 30 days of training). Neuroplasticity-related expression of the immediate early gene Arc implicated both regions during the goal-directed, early phases of spatial learning. These results suggest the functional involvement of aCC and DMS in processes of spatial cognition that model associative cortex-dependent, human episodic memory abilities.


Asunto(s)
Cognición , Cuerpo Estriado/fisiología , Giro del Cíngulo/fisiología , Conducta Espacial , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
11.
Nat Med ; 23(6): 674-677, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28504725

RESUMEN

Fragile X syndrome (FXS) is the leading monogenic cause of autism spectrum disorders (ASD). Trinucleotide repeat expansions in FMR1 abolish FMRP expression, leading to hyperactivation of ERK and mTOR signaling upstream of mRNA translation. Here we show that metformin, the most widely used drug for type 2 diabetes, rescues core phenotypes in Fmr1-/y mice and selectively normalizes ERK signaling, eIF4E phosphorylation and the expression of MMP-9. Thus, metformin is a potential FXS therapeutic.


Asunto(s)
Conducta Animal/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Hipoglucemiantes/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Metformina/farmacología , Conducta Social , Animales , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Expansión de Repetición de Trinucleótido
12.
Behav Brain Res ; 298(Pt B): 134-41, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26548360

RESUMEN

Dorsal striatum has been shown to contribute to spatial learning and memory, but the role of striatal subregions in this important aspect of cognitive functioning remains unclear. Moreover, the spatial-cognitive mechanisms that underlie the involvement of these regions in spatial navigation have scarcely been studied. We therefore compared spatial learning and memory performance in mice with lesions in dorsomedial (DMS) and dorsolateral striatum (DLS) using the hidden-platform version of the Morris water maze (MWM) task. Compared to sham-operated controls, animals with DMS damage were impaired during MWM acquisition training. These mice displayed delayed spatial learning, increased thigmotaxis, and increased search distance to the platform, in the absence of major motor dysfunction, working memory defects or changes in anxiety or exploration. They failed to show a preference for the target quadrant during probe trials, which further indicates that spatial reference memory was impaired in these animals. Search strategy analysis moreover demonstrated that DMS-lesioned mice were unable to deploy cognitively advanced spatial search strategies. Conversely, MWM performance was barely affected in animals with lesions in DLS. In conclusion, our results indicate that DMS and DLS display differential functional involvement in spatial learning and memory. Our results show that DMS, but not DLS, is crucial for the ability of mice to acquire spatial information and their subsequent deployment of spatial search strategies. These data clearly identify DMS as a crucial brain structure for spatial learning and memory, which could explain the occurrence of neurocognitive impairments in brain disorders that affect the dorsal striatum.


Asunto(s)
Discapacidades para el Aprendizaje/fisiopatología , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/fisiopatología , Neostriado/fisiopatología , Memoria Espacial/fisiología , Navegación Espacial/fisiología , Animales , Conducta Exploratoria/fisiología , Femenino , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Pruebas Neuropsicológicas , Distribución Aleatoria , Prueba de Desempeño de Rotación con Aceleración Constante
13.
Neurobiol Dis ; 76: 137-158, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25684539

RESUMEN

D1-dopamine receptors (Drd1a) are highly expressed in the deep layers of the cerebral cortex and the striatum. A number of human diseases such as Huntington disease and schizophrenia are known to have cortical pathology involving dopamine receptor expressing neurons. To illuminate their functional role, we exploited a Cre/Lox molecular paradigm to generate Emx-1(tox) MUT mice, a transgenic line in which cortical Drd1a-expressing pyramidal neurons were selectively ablated. Emx-1(tox) MUT mice displayed prominent forelimb dystonia, hyperkinesia, ataxia on rotarod testing, heightened anxiety-like behavior, and age-dependent abnormalities in a test of social interaction. The latter occurred in the context of normal working memory on testing in the Y-maze and for novel object recognition. Some motor and behavioral abnormalities in Emx-1(tox) MUT mice overlapped with those in CamKIIα(tox) MUT transgenic mice, a line in which both striatal and cortical Drd1a-expressing cells were ablated. Although Emx-1(tox) MUT mice had normal striatal anatomy, both Emx-1(tox) MUT and CamKIIα(tox) MUT mice displayed selective neuronal loss in cortical layers V and VI. This study shows that loss of cortical Drd1a-expressing cells is sufficient to produce deficits in multiple motor and behavioral domains, independent of striatal mechanisms. Primary cortical changes in the D1 dopamine receptor compartment are therefore likely to model a number of core clinical features in disorders such as Huntington disease and schizophrenia.


Asunto(s)
Conducta Animal/fisiología , Corteza Cerebral/fisiología , Enfermedad de Huntington/fisiopatología , Células Piramidales/fisiología , Receptores de Dopamina D1/fisiología , Esquizofrenia/fisiopatología , Animales , Ansiedad/genética , Ansiedad/fisiopatología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Femenino , Marcha/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Enfermedad de Huntington/genética , Masculino , Memoria/fisiología , Ratones , Ratones Transgénicos , Actividad Motora/genética , Mutación , Fenotipo , Receptores de Dopamina D1/genética , Esquizofrenia/genética , Conducta Social , Factores de Transcripción/genética , Factores de Transcripción/fisiología
14.
Brain Struct Funct ; 220(3): 1273-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24562414

RESUMEN

Although the Morris water maze (MWM) is the most frequently used protocol to examine hippocampus-dependent learning in mice, not much is known about the spatio-temporal dynamics of underlying plasticity processes. Here, we studied molecular and cellular hippocampal plasticity mechanisms during early and late phases of spatial learning in the MWM. Quantitative in situ hybridization for the immediate early genes zif268 and Homer1a (H1a) revealed phase-dependent differences in their expression between areas CA1 and CA3. During the initial learning phase, CA1 expression levels of the molecular plasticity marker H1a, but not of the activity reporter gene zif268, were related to task proficiency; whereas no learning-specific changes could be detected in CA3. Simultaneously, the ratio of surface-expressed NMDAR subunits NR2A and NR2B was downregulated as measured by acute slice biotinylation assay, while the total number of surface NMDARs was unaltered. When intrinsic 'somatic' and synaptic plasticity in the CA1-region of hippocampal slices were examined, we found that early learning promotes intrinsic neuronal plasticity as manifested by a reduction of spike frequency adaptation and postburst afterhyperpolarization. At the synaptic level, however, maintenance of long-term potentiation (LTP) in all learning groups was impaired which is most likely due to 'intrinsic' learning-induced LTP which occluded any further electrically induced LTP. Late learning, in contrast, was characterized by re-normalized H1a, NR2A and NR2B expression and neuronal firing, yet a further strengthening of learning-induced LTP. Together, our data support a precisely timed cascade of complex molecular and subcellular transformations occurring from early to late MWM learning.


Asunto(s)
Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Plasticidad Neuronal/fisiología , Animales , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Regulación hacia Abajo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Femenino , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Receptores de N-Metil-D-Aspartato/genética , Factores de Tiempo
15.
Brain Struct Funct ; 220(3): 1601-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24652381

RESUMEN

Matrix metalloproteinase-2 (MMP-2) is a highly studied proteolytic enzyme, involved in many detrimental and beneficial functions throughout the body, and also active in the central nervous system (CNS). MMP-2 is profoundly expressed in the developing cerebellum and was recently reported to modulate granule cell proliferation by affecting cell cycle kinetics in cerebella of postnatal day 3 mouse pups. In this report, a two-dimensional difference gel electrophoresis proteomics study was implemented at this postnatal stage and revealed 16 differentially expressed proteins between MMP-2-deficient (MMP-2(-/-)) and wild-type cerebella. Among those, collapsin response mediator protein 1 (CRMP1) could be identified as the most significant differential protein between the two genotypes. Western blot experiments confirmed this finding and further disclosed a significant increase in phosphorylated CRMP1 expression in MMP-2(-/-) cerebella. Strikingly, subsequent immunohistochemical and microscopic analyses revealed an aberrant Purkinje cell (PC) dendritogenesis, possibly related to upregulated (phospho-) CRMP1 levels in these neonatal MMP-2(-/-) animals. Further, detailed morphometric analyses showed persistent PC morphological changes in MMP-2(-/-) mice, from the neonatal stage until adulthood. These were characterized by a reduced growth of PC somata, reduced dendritic tree sizes, and a decreased dendritic arborization. During development, the observed defects were accompanied by a temporarily disturbed parallel fiber and climbing fiber synaptic input on the PCs, while in adult MMP-2(-/-) animals, an increased PC spine density and reduced spine lengths were noted. The observed PC abnormalities might contribute to the mild defects in motor performance, i.e. balance and coordination, detected in adult MMP-2(-/-) mice. Overall, these findings indicate the importance of MMP-2 in CNS development and dendritogenesis, and highlight the importance of a correct developmental wiring for adult brain morphology and function.


Asunto(s)
Cerebelo/enzimología , Cerebelo/ultraestructura , Espinas Dendríticas/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Células de Purkinje/enzimología , Animales , Cerebelo/embriología , Cerebelo/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Actividad Motora , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Células de Purkinje/metabolismo , Células de Purkinje/ultraestructura , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-24239593

RESUMEN

Cannabis use is an established risk factor for the development of schizophrenia and related psychotic disorders. Factors that may mediate susceptibility to the psychosis-inducing effects of cannabis include the age at onset of first cannabis use, genetic predisposition, as well as interaction with other environmental risk variables. Clinical and preclinical genetic studies provide increasing evidence that, in particular, genes encoding proteins implicated in dopamine signalling are implicated in the cannabis-psychosis association. In the present review, we focus on both human and animal studies which have focused on identifying the neuronal basis of these interactions. We conclude that further studies are required to provide greater mechanistic insight into the long-term and neurodevelopmental effects of cannabis use, with implications for improved understanding of the cannabis-psychosis relationship.


Asunto(s)
Cannabinoides/efectos adversos , Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Alucinógenos/efectos adversos , Fumar Marihuana/genética , Animales , Dopamina/metabolismo , Humanos , Trastornos Psicóticos/genética
17.
Neurobiol Dis ; 62: 323-37, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24135007

RESUMEN

Progressive cell loss is observed in the striatum, cerebral cortex, thalamus, hypothalamus, subthalamic nucleus and hippocampus in Huntington disease. In the striatum, dopamine-responsive medium spiny neurons are preferentially lost. Clinical features include involuntary movements, gait and orofacial impairments in addition to cognitive deficits and psychosis, anxiety and mood disorders. We utilized the Cre-LoxP system to generate mutant mice with selective postnatal ablation of D1 dopamine receptor-expressing striatal neurons to determine which elements of the complex Huntington disease phenotype relate to loss of this neuronal subpopulation. Mutant mice had reduced body weight, locomotor slowing, reduced rearing, ataxia, a short stride length wide-based erratic gait, impairment in orofacial movements and displayed haloperidol-suppressible tic-like movements. The mutation was associated with an anxiolytic profile. Mutant mice had significant striatal-specific atrophy and astrogliosis. D1-expressing cell number was reduced throughout the rostrocaudal extent of the dorsal striatum consistent with partial destruction of the striatonigral pathway. Additional striatal changes included up-regulated D2 and enkephalin mRNA, and an increased density of D2 and preproenkephalin-expressing projection neurons, and striatal neuropeptide Y and cholinergic interneurons. These data suggest that striatal D1-cell-ablation alone may account for the involuntary movements and locomotor, balance and orofacial deficits seen not only in HD but also in HD phenocopy syndromes with striatal atrophy. Therapeutic strategies would therefore need to target striatal D1 cells to ameliorate deficits especially when the clinical presentation is dominated by a bradykinetic/ataxic phenotype with involuntary movements.


Asunto(s)
Cuerpo Estriado/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Receptores de Dopamina D1/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Recuento de Células , Cuerpo Estriado/patología , Discinesias/fisiopatología , Femenino , Marcha/fisiología , Masculino , Ratones , Ratones Endogámicos , Ratones Transgénicos , Equilibrio Postural/fisiología , Receptores de Dopamina D1/genética
18.
Proc Natl Acad Sci U S A ; 110(8): 3131-6, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23382228

RESUMEN

The multiple memory systems hypothesis posits that dorsal striatum and hippocampus are central nodes in independent memory systems, supporting response-based and place-based learning, respectively. Although our understanding of the function of hippocampus within this framework is relatively well established, the contribution of dorsal striatum is less clear. This in part seems to be due to the heterogeneous nature of dorsal striatum, which receives extensive topographically organized projections from higher cortical areas. Here we quantified neural activity in the intact brain while mice and humans acquired analogous versions of the Morris water maze. We found that dorsomedial striatum and medial prefrontal cortex support the initial acquisition of what is typically considered a hippocampus-dependent spatial learning task. We suggest that the circuit involving dorsomedial striatum and medial prefrontal cortex identified here plays a more task-independent role in early learning than currently thought. Furthermore, our results demonstrate that dorsomedial and dorsolateral striatum serve fundamentally different roles during place learning. The remarkably high degree of anatomical overlap in brain function between mouse and human observed in our study emphasizes the extent of convergence achievable with a well-matched multilevel approach.


Asunto(s)
Cuerpo Estriado/fisiología , Aprendizaje por Laberinto , Corteza Prefrontal/fisiología , Adulto , Animales , Femenino , Humanos , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Adulto Joven
19.
Brain Res Bull ; 94: 71-81, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23357176

RESUMEN

Neonatal lesioning of the ventral hippocampus (vHc) in rats has served as a useful heuristic animal model to elucidate neurodevelopmental mechanisms of schizophrenia (SCZ). In the current study we have established that this procedure can be applied to model SCZ symptomatology in mice. Neonatal mice (postnatal day 6) were anaesthetised by hypothermia and electrolytic lesions of the vHc were induced. We observed locomotor hyperactivity at prepubertal and adult age and hypersensitivity to amphetamine. Furthermore, working memory deficits were observed in Y-maze (spontaneous alternation) and T-maze (exploration of a novel arm) test protocols. Decreased anxious behaviour in the elevated plus maze and increased sociability were also observed. These changes were dependent on lesion size. No differences were observed in prepulse inhibition of the startle reflex, latent inhibition, spatial memory (Morris water maze), problem solving capacities (syringe puzzle) and ability to discriminate between different unfamiliar mice. The presented findings might further help to identify neurobiological mechanisms of neurodevelopmental disorders.


Asunto(s)
Encefalopatías/complicaciones , Modelos Animales de Enfermedad , Hipocampo/cirugía , Animales , Animales Recién Nacidos , Conducta Animal , Encefalopatías/etiología , Hipocampo/lesiones , Hipocampo/fisiopatología , Hipercinesia/etiología , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Esquizofrenia/fisiopatología
20.
J Pharmacol Sci ; 121(1): 39-47, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23337398

RESUMEN

Considerable topographic overlap exists between brain opioidergic and dopaminergic neurons. Pharmacological blockade of the dopamine D(1) receptor (Drd1a) reverses several behavioural phenomena elicited by opioids. The present study examines the effects of morphine in adult mutant (MUT) mice expressing the attenuated diphtheria toxin-176 gene in Drd1a-expressing cells, a mutant line shown previously to undergo post-natal striatal atrophy and loss of Drd1a-expression. MUT and wild-type mice were assessed behaviourally following acute administration of 10 mg/kg morphine. Treatment with morphine reduced locomotion and rearing similarly in both genotypes but reduced total grooming only in MUT mice. Morphine-induced Straub tail and stillness were heightened in MUT mice. Chewing and sifting were decreased in MUT mice and these effects were not modified by morphine. Loss of striatal Drd1-positive cells and up-regulated D(2)-expression, as reflected in down-regulated D(1)-like and up-regulated D(2)-like binding, respectively, is not uniform along the cranio-caudal extent in this model but appears to be greater in the caudal striatum. Preferential caudal loss of µ-opioid-expression, a marker for the striosomal compartment, was seen. These data indicate that Drd1a-positive cell loss modifies the exploratory behavioural response elicited by morphine, unmasking novel morphine-induced MUT-specific behaviours and generating a hypersensitivity to morphine for others.


Asunto(s)
Conducta Animal/efectos de los fármacos , Ratones Mutantes/genética , Ratones Mutantes/psicología , Morfina/farmacología , Receptores de Dopamina D1/antagonistas & inhibidores , Animales , Núcleo Caudado/metabolismo , Femenino , Masculino , Ratones , Morfina/administración & dosificación , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Opioides mu/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...