Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 730, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103879

RESUMEN

BACKGROUND: Inflammation plays a critical role in tumor development. Inflammatory cell infiltration and inflammatory mediator synthesis cause changes in the tumor microenvironment (TME) in several cancers, especially in intrahepatic cholangiocellular carcinoma (ICC). However, methods to ascertain the inflammatory state of patients using reliable biomarkers are still being explored. METHOD: We retrieved the RNA sequencing and somatic mutation analyses results and the clinical characteristics of 244 patients with ICC from published studies. We performed consensus clustering to identify the molecular subtypes associated with inflammation. We compared the prognostic patterns, clinical characteristics, somatic mutation profiles, and immune cell infiltration patterns across inflammatory subtypes. We performed quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) to confirm gene expression. We performed logistic regression analyses to construct a nomogram predicting the inflammatory status of patients with ICC. RESULTS: Our results confirmed that ICC can be categorized into an inflammation-high subtype (IHS) and an inflammation-low subtype (ILS). Patients from each group had distinct prognosis, clinical characteristics, and TME composition. Patients with ICC in the IHS group showed poorer prognosis owing to the immunosuppressive microenvironment and high frequency of KRAS and TP53 mutations. Cancer-associated fibroblast (CAF)-derived COLEC11 reduced myeloid inflammatory cell infiltration and attenuated inflammatory responses. The results of qRT-PCR and IHC experiments confirmed that COLEC11 expression levels were significantly reduced in tumor tissues compared to those in paracancerous tissues. Patients with ICC in the IHS group were more likely to respond to treatment with immune checkpoint inhibitors (ICIs) owing to their higher tumor mutational burden (TMB) scores, tumor neoantigen burden (TNB) scores, neoantigen counts, and immune checkpoint expression levels. Finally, we developed a nomogram to effectively predict the inflammatory status of patients with ICC based on their clinical characteristics and inflammatory gene expression levels. We evaluated the calibration, discrimination potential, and clinical utility of the nomogram. CONCLUSION: The inflammatory response in IHS is primarily induced by myeloid cells. COLEC11 can reduce the infiltration level of this group of cells, and myeloid inflammatory cells may be a novel target for ICC treatment. We developed a novel nomogram that could effectively predict the inflammatory state of patients with ICC, which will be useful for guiding individualized treatment plans.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Inflamación , Microambiente Tumoral , Humanos , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Inflamación/patología , Inflamación/genética , Microambiente Tumoral/inmunología , Masculino , Femenino , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Persona de Mediana Edad , Pronóstico , Mutación/genética , Anciano , Regulación Neoplásica de la Expresión Génica , Nomogramas , Reproducibilidad de los Resultados
2.
Cancer Sci ; 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183447

RESUMEN

Combination therapy of anti-programmed cell death protein-1 (PD-1) antibodies and tyrosine kinase inhibitors (TKIs) has significantly improved the prognosis for hepatocellular carcinoma (HCC), but many patients still have unsatisfactory outcomes. CD8 T cells are known to exert a pivotal function in the immune response against tumors. Nevertheless, most CD8 T cells in HCC tissues are in a state of exhaustion, losing the cytotoxic activity against malignant cells. Cytokines, mainly secreted by immune cells, play an important role in the occurrence and development of tumors. Here, we demonstrated the changes in exhausted CD8T cells during combination therapy by single-cell RNA sequencing (scRNA-seq) analysis on tumor samples before and after treatment. Combination therapy exerted a substantial impact on the exhausted CD8T cells, particularly in terms of cytokine expression. CCL5 was the most abundantly expressed cytokine in CD8T cells and exhausted CD8T cells, and its expression increased further after treatment. Subsequently, we discovered the CCL5/CCR5/CYP1A1 pathway through RNA sequencing (RNA-seq) on CCL5-stimulated Huh7 cells and verified through a series of experiments that this pathway can mediate the resistance of liver cancer cells to lenvatinib. Tissue experiments showed that after combination therapy, the CCL5/CCR5/CYP1A1 pathway was activated, which can benefit the residual tumor cells to survive treatment. Tumor-bearing mouse experiments demonstrated that bergamottin (BGM), a competitive inhibitor of CYP1A1, can enhance the efficacy of both lenvatinib and combination therapy. Our research revealed one mechanism by which hepatoma cells can survive the combination therapy, providing a theoretical basis for the refined treatment of HCC.

3.
Heliyon ; 10(15): e35469, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170573

RESUMEN

Objective: To explore the research progress and trends on mineral elements and depression. Methods: After querying the MeSH database and referring to the search rules, the search terms were selected and optimized to obtain the target literature collection. We analyzed the general characteristics of the literature, conducted network clustering and co-occurrence analysis, and carried out a narrative review of crucial literature. Results: Bipolar disorder was a dominant topic in the retrieved literature, which saw a significant increase in 2010 and 2019-2020. Most studies focused on mineral elements, including lithium, calcium, magnesium, zinc, and copper. The majority of journals and disciplines were in the fields of psychiatry, neuropsychology, neuropharmacology, nutrition, medical informatics, chemistry, and public health. The United States had the highest proportion in terms of paper sources, most-cited articles, high-frequency citations, frontier citations, and high centrality citation. Regarding the influence of academic institutions, the top five were King's College London, the Chinese Academy of Sciences, University of Barcelona, INSERM, and Heidelberg University. Frontier keywords included bipolar disorder, drinking water, (neuro)inflammation, gut microbiota, and systematic analysis. Research on lithium response, magnesium supplementation, and treatment-resistant unipolar depression increased significantly after 2013. Conclusion: Global adverse events may have indirectly driven the progress in related research. Although the literature from the United States represents an absolute majority, its influence on academic institutions is relatively weaker. Multiple pieces of evidence support the efficacy of lithium in treating bipolar disorder (BD). A series of key discoveries have led to a paradigm shift in research, leading to increasingly detailed studies on the role of magnesium, calcium, zinc, and copper in the treatment of depression. Most studies on mineral elements remain diverse and inconclusive. The potential toxicity and side effects of some elements warrant careful attention.

4.
Sci Rep ; 14(1): 16596, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025980

RESUMEN

To analyze the differential expression genes of polycystic ovary syndrome (PCOS), clarify their functions and pathways, as well as the protein-protein interaction network, identify HUB genes, and explore the pathological mechanism. PCOS microarray datasets were screened from the GEO database. Common differentially expressed genes (co-DEGs) were obtained using GEO2R and Venn analysis. Enrichment and pathway analyses were conducted using the DAVID online tool, with results presented in bubble charts. Protein-protein interaction analysis was performed using the STRING tool. HUB genes were identified using Cytoscape software and further interpreted with the assistance of the GeneCards database. A total of two sets of co-DEGs (108 and 102), key proteins (15 and 55), and hub genes (10 and 10) were obtained. The co-DEGs: (1) regulated inflammatory responses and extracellular matrix, TNF, and IL-17 signaling pathways; (2) regulated ribosomes and protein translation, ribosome and immune pathways. The key proteins: (1) regulated inflammation, immunity, transcription, matrix metabolism, proliferation/differentiation, energy, and repair; (2) regulated ubiquitination, enzymes, companion proteins, respiratory chain components, and fusion proteins. The Hub genes: (1) encoded transcription factors and cytokines, playing vital roles in development and proliferation; (2) encoded ribosomes and protein synthesis, influencing hormone and protein synthesis, associated with development and infertility. The dysregulated expression of inflammation and protein synthesis genes in PCOS may be the key mechanism underlying its onset and progression.


Asunto(s)
Perfilación de la Expresión Génica , Síndrome del Ovario Poliquístico , Mapas de Interacción de Proteínas , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Humanos , Femenino , Mapas de Interacción de Proteínas/genética , Inflamación/genética , Inflamación/metabolismo , Transcriptoma , Redes Reguladoras de Genes , Regulación de la Expresión Génica , Biosíntesis de Proteínas/genética , Transducción de Señal/genética
5.
Nephrology (Carlton) ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075751

RESUMEN

AIM: Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury. Hydrogen sulphide (H2S) exerts a protective effect in renal IRI. The present study was carried out to investigate the effects of exogenous H2S on renal IRI by regulating autophagy in mice. METHODS: Mice were randomly assigned to control, IRI and NaHS (an H2S donor, 28, 56 and 100 µmol/kg) groups. Renal IRI was induced by clamping the bilateral renal pedicles with non-traumatic arterial clamp for 45 min and then reperfused for 24 h. Mice were administered intraperitoneally with NaHS 20 min prior to renal ischemia. Sham group mice underwent the same procedures without clamping. Serum and kidney tissues were harvested 24 h after reperfusion for functional, histological, oxidative stress, and autophagic determination. RESULTS: Compared with the control group, the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), the protein levels of LC3II/I, Beclin-1 and P62, as well as the number of autophagosomes were significantly increased, but the activity of superoxide dismutase (SOD) was decreased after renal IRI. NaHS pre-treatment dramatically attenuated renal IRI-induced renal dysfunction, histological changes, MDA concentration and p62 expression in a dose-dependent manner. However, NaHS increased the SOD activity and the protein levels of LC3II/I and Beclin-1. CONCLUSION: These results indicate that exogenous H2S protects the kidney from IRI through enhancement of autophagy and reduction of oxidative stress. Novel H2S donors could be developed in the treatment of renal IRI.

6.
Bioorg Chem ; 148: 107428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733749

RESUMEN

Five pairs of new merosesquiterpenoid enantiomers, named dauresorcinols A-E (1-5), were isolated from the leaves of Rhododendron dauricum. Their structures were elucidated by comprehensive spectroscopic data analysis, quantum chemical calculations, Rh2(OCOCF3)4-induced ECD, and single-crystal X-ray diffraction analysis. Dauresorcinols A (1) and B (2) possess two new merosesquiterpene skeletons bearing an unprecedented 2,6,7,10,14-pentamethyl-11-oxatetracyclo[8.8.0.02,7.012,17]octadecane and a caged 15-isohexyl-1,5,15-trimethyl-2,10-dioxatetracyclo[7.4.1.111,14.03,8]pentadecane motif, respectively. Plausible biosynthetic pathways of 1-5 are proposed involving key oxa-electrocyclization and Wagner-Meerwein rearrangement reactions. (+)/(-)-1 and 3-5 showed potent α-glucosidase inhibitory activity, 3 to 22 times stronger than acarbose, an antidiabetic drug targeting α-glucosidase. Docking results provide a basis to design and develop merosesquiterpenoids as potent α-glycosidase inhibitors.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Rhododendron , Rhododendron/química , Estereoisomerismo , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Estructura Molecular , Relación Estructura-Actividad , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Humanos , Relación Dosis-Respuesta a Droga , Hojas de la Planta/química , Cristalografía por Rayos X , Modelos Moleculares
7.
Fitoterapia ; 172: 105770, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056699

RESUMEN

Thirteen diterpenoids (1-13), classified into four structurally diverse carbon skeletons, including 1,5-seco-kalmane (1 and 6), grayanane (2-11), kalmane (12), and rhodomollane (13), were isolated from the flowers extract of Rhododendron molle. Among them, rhodomollinols A - E (1-5) were five new diterpenoids and their structures were elucidated by extensive spectroscopic methods including HRESIMS, UV, IR, 1D and 2D NMR, as well as quantum ECD calculations. Rhodomollinol A (1) is the first representative of a 6-deoxy-1,5-seco-kalmane diterpenoid. The abnormal NMR phenomenon of the presence of only 9 carbon resonances instead of 20 carbons in the 13C NMR spectrum of 1 was observed and elucidated by the quantum NMR calculations. All diterpenoids 1-13 showed significant analgesic activities in an acetic acid-induced writhing model. It's the first time to report the analgesic activity of a rhodomollane-type diterpenoid. At a dose of 1.0 mg/kg, diterpenoids 1-3, 6, 8, 9, and 12 reduced the writhe numbers with inhibition rates over 50%, and 9 exhibited stronger analgesic activity with a writhe inhibition rate of 89.7% than that of the positive control morphine. Importantly, even at the lowest dose of 0.04 mg/kg, rhodomollinols A (1) and B (2), rhodomollein X (7), and 2-O-methylrhodojaponin VI (9) still showed more potent analgesic effects than morphine with the writhe inhibition rates of 51.8%, 48.0%, 61.7%, and 60.0%, respectively. A preliminary structure-activity relationship might provide some clues to design potential analgesics on the basis of structurally diverse Ericaceae diterpenoids.


Asunto(s)
Diterpenos , Rhododendron , Rhododendron/química , Estructura Molecular , Flores/química , Analgésicos/farmacología , Diterpenos/farmacología , Diterpenos/química , Carbono/análisis , Derivados de la Morfina/análisis
8.
Bioorg Chem ; 142: 106928, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922768

RESUMEN

A systematical investigation on the chemical constituents of the flowers of Rhododendron molle (Ericaceae) led to the isolation and characterization of thirty-eight highly functionalized grayanane diterpenoids (1-38), including twelve novel analogues molleblossomins A-L (1-12). Their structures were elucidated by comprehensive methods, including 1D and 2D NMR analysis, calculated ECD, 13C NMR calculations with DP4+ probability analysis, and single crystal X-ray diffraction. Molleblossomins A (1), B (2), and E (5) are the first representatives of 2ß,3ß:9ß,10ß-diepoxygrayanane, 2,3-epoxygrayan-9(11)-ene, and 5,9-epoxygrayan-1(10),2(3)-diene diterpenoids, respectively. Molleblossomins G (7) and H (8) represent the first examples of 1,3-dioxolane-grayanane conjugates furnished with the acetaldehyde and 4-hydroxylbenzylidene acetal moieties, respectively. All grayanane diterpenoids 1-38 were screened for their analgesic activities in the acetic acid-induced writhing model, and all of them exhibited significant analgesic activities. Diterpenoids 6, 13, 14, 17, 20, and 25 showed more potent analgesic effects than morphine at a lower dose of 0.2 mg/kg, with the inhibition rates of 51.4%, 68.2%, 94.1%, 66.9%, 97.7%, and 60.0%, respectively. More importantly, even at the lowest dose of 0.04 mg/kg, rhodomollein X (14), rhodojaponin VI (20), and rhodojaponin VII (22) still significantly reduced the number of writhes in the acetic acid-induced pain model with the percentages of 61.7%, 85.8%, and 64.6%, respectively. The structure-activity relationship was summarized and might provide some hints to design novel analgesics based on the functionalized grayanane diterpenoids.


Asunto(s)
Diterpenos , Rhododendron , Rhododendron/química , Estructura Molecular , Flores/química , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/química , Diterpenos/farmacología , Diterpenos/uso terapéutico , Diterpenos/química , Ácido Acético/análisis
9.
ACS Nano ; 17(23): 24227-24241, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992278

RESUMEN

Developing advanced high voltage lithium-metal batteries (LMBs) with superior stability and intrinsic safety is of great significance for practical applications. However, the easy flammability of conventional carbonate solvents and inferior compatibility of commercial electrolytes for both highly reactive Li anodes and high-voltage cathodes severely hinder the implementation process. Hence, we rationally designed an intrinsically nonflammable and low-cost phosphate electrolyte toward stable high-voltage LMBs by bidirectionally modulating the interphases. Benefiting from the synergistic regulation of LiNO3 and DME dual-additives in the 1.5 M LiTFSI/Triethyl phosphate electrolyte, thin, dense and robust electrodes/electrolyte interphases were well constructed simultaneously on the surfaces of Li anode and Ni-rich cathode, dramatically improving the stability and compatibility between electrodes and electrolyte. Consequently, boosted kinetic and high Coulombic efficiency of 98.6% for Li metal plating/stripping over 400 cycles and superior cycling stability of exceeding 4,000 h in Li symmetric cell is achieved. More importantly, the Li∥LiNi0.6Mn0.2Co0.2O2 cell assembled with a thin Li anode and high mass-loading cathode at a high cutoff voltage of 4.6 V retains a 98.4% capacity retention after 500 cycles at 1C. This work affords a promising strategy to develop nonflammable electrolytes enabling the high safety, good cyclability, and low cost of high-energy LMBs.

10.
Zookeys ; 1179: 35-61, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719776

RESUMEN

Five new species of the genus Hermonassa Walker, 1865 (H.nigricanssp. nov., H.conusasp. nov., H.brunneocuprinasp. nov., H.albimaculasp. nov., and H.linzhiensis, sp. nov. are described from Autonomic Region Xizang, China (Tibet). Hermonassanigricanssp. nov. is distributed in Nepal and China, and the Himalayan species H.kalamantra Kovács, G. Ronkay & L. Ronkay, 2018 is reсorded for China for the first time. The occurrences of H.anthracina Boursin, 1967 in Nepal is questionable taking in the account the presence of two externally hardly distinguishable species, H.kalamantra and H.nigricanssp. nov. New collecting data for H.yixincheni Han & Li, 2007 and H.oleographa Hampson, 1911 in China are presented. Five species groups are reviewed, and three species groups are designated.

11.
Chemistry ; 29(70): e202302773, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37750566

RESUMEN

Lithium (Li) metal is a promising anode candidate for high-energy-density batteries owing to its high theoretical capacity and low electrochemical potential. However, uneven Li nucleation, uncontrollable dendritic growth, infinite voltage change and even safety issues hinder its commercial application. Herein, a three-dimensional (3D) framework of freestanding vanadium nitride nanowires (VN NWs) is established as Li host for dendrite-free Li metal anode. A lithiophilic Li3 N interlayer which in situ formed by the surface reaction between molten Li and VN NWs is utilized to guide a uniform Li nucleation and deposition within the skeleton, as well as avoid the dendrite formation. Meanwhile, VN NWs can decrease local current density, homogenize Li-ion flux and accommodate volume fluctuations of the anode due to its 3D structure with high electron conductivity. Thus, the corresponding composite Li metal anode delivers a long-life span of 500 cycles (1000 h) at a current density of 0.5 mA cm-2 , and exhibits lower nucleation over-potential and voltage hysteresis at different current densities from 0.5~5 mA cm-2 in carbonate electrolyte. In conclusion, this work provides a new type of scaffold with both high electronic conductivity and excellent lithiophilicity for stable Li anodes.

12.
Small ; 19(49): e2303784, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37612805

RESUMEN

Li-S batteries are regarded as promising devices for energy storage systems owing to high energy density, low cost, and environmental friendliness. However, challenges of polysulfides shuttling in sulfur cathode and dendrite growth of lithium anode severely hinder the practical application. Developing advanced skeletons simultaneously regulating the cathode and anode is significant and challenging. Hence, a novel and scalable strategy combining spray drying and topological nitriding is proposed, and hierarchically assembled rGO hollow microspheres encapsulated highly porous nanospheres consisted of ultrafine Nb4 N5 -Nb2 O5 or Nb4 N5 nanoparticles as multifunctional skeletons for S and Li are designed. In such unique architecture, a 3D highly porous structure provides abundant void space for loading of S and Li, and accommodates volume change during cycling. Moreover, Nb4 N5 -Nb2 O5 heterostructured interface promotes adsorption-conversion process of polysulfides, while strong lithophilic Nb4 N5 induces the selective infiltration of Li into the void of the skeleton and regulates the uniform deposition and growth. More interestingly, in situ generated Li3 N@Nb ion/electron conducting interfaces induced by the reaction of Nb4 N5 and Li reduce the nucleation overpotential and induce selective deposition of Li into the cavity. Consequently, the Li-S full cell exhibits superior cycling stability and impressive rate performance with a low capacity ratio of negative/positive.

13.
J Integr Med ; 21(4): 385-396, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37380564

RESUMEN

OBJECTIVE: This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder (PTSD). METHODS: The Web of Science database (2007-2022) was searched using the search terms "phytochemicals" and "PTSD," and relevant literature was compiled. Network clustering co-occurrence analysis and qualitative narrative review were conducted. RESULTS: Three hundred and one articles were included in the analysis of published research, which has surged since 2015 with nearly half of all relevant articles coming from North America. The category is dominated by neuroscience and neurology, with two journals, Addictive Behaviors and Drug and Alcohol Dependence, publishing the greatest number of papers on these topics. Most studies focused on psychedelic intervention for PTSD. Three timelines show an "ebb and flow" phenomenon between "substance use/marijuana abuse" and "psychedelic medicine/medicinal cannabis." Other phytochemicals account for a small proportion of the research and focus on topics like neurosteroid turnover, serotonin levels, and brain-derived neurotrophic factor expression. CONCLUSION: Research on phytochemicals and PTSD is unevenly distributed across countries/regions, disciplines, and journals. Since 2015, the research paradigm shifted to constitute the mainstream of psychedelic research thus far, leading to the exploration of botanical active ingredients and molecular mechanisms. Other studies focus on anti-oxidative stress and anti-inflammation. Please cite this article as: Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. J Integr Med. 2023; 21(4):385-396.


Asunto(s)
Alucinógenos , Trastornos por Estrés Postraumático , Trastornos Relacionados con Sustancias , Humanos , Trastornos por Estrés Postraumático/tratamiento farmacológico , Alucinógenos/uso terapéutico , Trastornos Relacionados con Sustancias/tratamiento farmacológico
14.
Bioorg Med Chem ; 90: 117338, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37269687

RESUMEN

Owing to the urgency and importance of developing fourth-generation EGFR inhibitors that can effectively overcome C797S site mutation in NSCLC, Brigatinib was used in this work as a lead compound to modify its structure to obtain a series of phosphoroxy quinazoline derivatives. Biological study indicated that the inhibitory activity and selectivity of the target compounds on EGFRL858R/T790M/C797S/EGFRDel19/T790M/C797S enzymes and EGFRDel19/T790M/C797S overexpressed Ba/F3 cells were significantly better than those of Brigatinib. Among the target compounds, 8a exhibited the best biological activity in vitro. More importantly, 8a presented acceptable pharmacokinetic behaviors and showed potent anti-tumor efficacy in the Ba/F3-EGFRDel19/T790M/C797S subcutaneous xenograft mice model with the tumor growth inhibition value of 82.60% at a dose of 30 mg/kg. These results indicated that 8a, as a drug candidate of the novel fourth-generation EGFR small-molecule inhibitor, has high potentials to treat with NSCLC on EGFR with C797S mutation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Quinazolinas/farmacología , Receptores ErbB/genética , Mutación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos , Línea Celular Tumoral
15.
Mater Today Bio ; 19: 100590, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36910272

RESUMEN

Implants made of Ti and its alloys are widely utilized in orthopaedic surgeries. However, insufficient osseointegration of the implants often causes complications such as aseptic loosening. Our previous research discovered that disordered titanium dioxide nanorods (TNrs) had satisfactory antibacterial properties and biocompatibility, but TNrs harmed angiogenic differentiation, which might retarded the osseointegration process of the implants. Magnetic nanomaterials have a certain potential in promoting osseointegration, electromagnetic fields within a specific frequency and intensity range can facilitate angiogenic and osteogenic differentiation. Therefore, this study used Fe3O4 to endow magnetism to TNrs and explored the regulation effects of Ti, TNrs, and Fe3O4-TNrs under 1 â€‹mT 15 â€‹Hz sinusoidal electromagnetic field (SEMF) on osteoblastogenesis, osseointegration, angiogenesis, and its mechanism. We discovered that after the addition of SEMF treatment to VR-EPCs cultured on Fe3O4-TNrs, the calcineurin/NFAT signaling pathway was activated, which then reversed the inhibitory effect of Fe3O4-TNrs on angiogenesis. Besides, Fe3O4-TNrs with SEMF enhanced osteogenic differentiation and osseointegration. Therefore, the implant modification mode of Fe3O4-TNrs with the addition of SEMF could more comprehensively promote osseointegration and provided a new idea for the modification of implants.

16.
Food Chem ; 413: 135643, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773353

RESUMEN

Methylation is a common structural modification of catechins in tea, which can improve the bioavailability of catechins. Flavoalkaloids are catechin derivatives with a nitrogen containing five-membered ring at the C-6 or C-8 position. Here we isolated three new methylated flavoalkaloids from Echa 1 green tea (Camellia sinensis cv. Echa 1) and synthesized another four new methylated flavoalkaloids. The structures of the new ester-type methylated catechins (etmc)-pyrrolidinone A-G (1-7) were elucidated by various spectroscopic techniques, including nuclear magnetic resonance (NMR), optical rotation, infrared, UV-vis, experimental and calculated circular dichroism (CD) spectra, and high-resolution mass. Among them, 6 and 7 showed the strongest α-glucosidase inhibitory activity and significantly lowered lipid content of Caenorhabditis elegans with 73.50 and 67.39% inhibition rate, respectively. Meanwhile, 6 and 7 also exhibited strong antioxidant activity in vitro and stress resistance to heat, oxidative stress, and UV irradiation in nematodes.


Asunto(s)
Camellia sinensis , Catequina , Animales , Té/química , Caenorhabditis elegans , Camellia sinensis/química , Antioxidantes
17.
Front Immunol ; 14: 1114717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814910

RESUMEN

Background: Immunotherapy has been the first-line treatment option in advanced Hepatocellular Carcinoma(HCC); but now, there are no established molecular markers that can predict immunotherapy response. Estrogen has a crucial role in the development of a variety of liver illnesses, including liver fibrosis, Nonalcoholic fatty liver disease (NAFLD), and HCC. Nonetheless, the significance of estrogen-related genes in HCC immunotherapy and the underlying molecular mechanisms are not yet fully understood. Method: In this study, we constructed a novel estrogen-related gene prognostic signature (ERGPS) by analyzing bulk RNA sequencing data from 365 HCC patients. Based on the median risk score, we divided 365 HCC patients into low- and high-risk groups. Tumor mutation burden (TMB), Microsatellite instability (MSI), T cell receptor (TCR) richness, B cell receptor (BCR) richness, single-nucleotide variants (SNV) Neoantigens, Cancer Testicular Antigens (CTA) scores, and Tumour Immune Dysfunction and Exclusion (TIDE) scores were used to evaluate the magnitude of immunotherapy response. Multiple external datasets validate the validity and robustness of the prognostic signature. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to validate estrogen-related gene overexpression in HCC tissue samples. Results: ERGPS is an independent risk factor affecting the prognosis of HCC patients and is superior to other clinical variables in predicting patient survival and immunotherapy response. Multiple independent external datasets confirmed the superior predictive efficacy of the prognostic signature. The prognostic signature was positively correlated with TMB score, MSI score, TCR richness, BCR richness, SNV Neoantigens score, CTA score, expression levels of immune checkpoint-related genes, and TIDE score. Patients with HCC in the high-risk group identified by the prognostic signature were likely to be more responsive to immunotherapy and more suitable for immunotherapy. qRT-PCR confirmed that estrogen-related genes of the construct signature were highly expressed in HCC tumor tissues. Conclusion: Estrogen-related genes are overexpressed in HCC tissues. Our novel prognostic signature can accurately predict not only the prognosis but also the immunotherapy response of HCC patients. In the future, prognostic signatures will be a useful tool for clinicians to screen patients with HCC who are suitable for immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Inmunoterapia , Estrógenos , Inestabilidad de Microsatélites
18.
Acta Psychol (Amst) ; 234: 103856, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36774771

RESUMEN

Smart education is a combination of AI and education, and its benefits are delayed. Existing research lacks an understanding of smart education continuance intention in the context of this delayed benefit. Thus, this study aimed to examine users' continuance intention in a delayed benefit context by integrating sensory stimulus, the extended UTAUT, and flow theory. The study focused on a mobile-based smart education (MBSE) system (Liulishuo) and collected data on 494 MBSE users. The PLS-SEM analysis suggested that the model is largely supported. Identifying MBSE's technical attributes as sensory stimuli, the extended UTAUT as primary information processing, flow as secondary information processing, and continuance intention as a decision, this study verifies the relationships between various constructs and their influence on MBSE continuance intention. The results also indicate that a user's flow state plays a crucial role in strengthening continuance intention and realizing the delayed benefits of smart education. Thus, this study provides a deeper understanding of continuous usage mechanisms as they relate to smart education.


Asunto(s)
Cognición , Intención , Humanos , Escolaridad , Recolección de Datos
19.
Sci Rep ; 13(1): 1137, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670201

RESUMEN

Aging is an inevitable consequence of life, characterized by a progressive decline in tissue and organ function and an increased risk of death. There is growing evidence that aging is closely related to tumor development and immune regulation. However, in hepatocellular carcinoma, the relationship between cellular senescence and immune infiltration, energy metabolism, chemokines, and immunotherapeutic response is unclear and needs further study. We first analyzed 274 cellular senescence-associated genes by the NMF algorithm and identified two cellular senescence-associated clusters. Subsequently, we compared the differences between the two clusters, in terms of immune infiltration, energy metabolism, chemokines, and immunotherapeutic response to treatment. We further constructed risk models using cellular senescence-associated signature genes that could effectively identify the two subpopulations. Finally, we validated the validity and robustness of the risk model using an external dataset. We found significant differences in survival prognosis between two cellular senescence-associated clusters. In addition, we found significant differences in immune cell infiltration, expression of energy metabolism-related genes, expression of chemokine-related genes, expression of immune checkpoint-related genes, Tumor Immune Dysfunction and Exclusion between the two clusters. Also, a scoring system associated with cellular senescence was developed and validated as an independent prognostic indicator. It was validated as an independent prognostic factor and immunotherapeutic predictor for HCC. It was validated as an independent prognostic factor and immunotherapeutic predictor for HCC. The cellular senescence-related scoring system was validated as an independent prognostic factor and immunotherapy predictor for HCC, and patients with low CSS were characterized by prolonged survival time. Our study confirmed the relationship between cellular senescence and immune cell infiltration, energy metabolism, chemokines, expression of immune checkpoint-related genes, and response to immunotherapy. This enhances our understanding of cellular senescence and tumor immune microenvironment, energy metabolism, chemokines, and provides new insights to improve immunotherapy outcomes in HCC patients. It provides new insights to improve the outcome of immunotherapy in HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Senescencia Celular , Inmunoterapia , Metabolismo Energético , Microambiente Tumoral , Pronóstico
20.
J Am Chem Soc ; 145(5): 3196-3203, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696679

RESUMEN

Extracellular protein disulfide isomerase (PDI) is a promising target for thrombotic-related diseases. Four potent PDI inhibitors with unprecedented chemical architectures, piericones A-D (1-4), were isolated from Pieris japonica. Their structures were elucidated by spectroscopic data analysis, chemical methods, quantum 13C nuclear magnetic resonance DP4+ and electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. Piericones A (1) and B (2) were nanomolar noncompetitive PDI inhibitors possessing an unprecedented 3,6,10,15-tetraoxatetracyclo[7.6.0.04,9.01,12]pentadecane motif with nine contiguous stereogenic centers. Their biosynthetic pathways were proposed to include a key intermolecular aldol reaction and an intramolecular 1,2-migration reaction. Piericone A (1) significantly inhibited in vitro platelet aggregation and fibrin formation and in vivo thrombus formation via the inhibition of extracellular PDI without increasing the bleeding risk. The molecular docking and dynamics simulation of 1 and 2 provided a novel structure basis to develop PDI inhibitors as potent antithrombotics.


Asunto(s)
Proteína Disulfuro Isomerasas , Trombosis , Humanos , Proteína Disulfuro Isomerasas/química , Plaquetas/metabolismo , Fibrinolíticos/metabolismo , Simulación del Acoplamiento Molecular , Trombosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...