RESUMEN
The rapid economic development and accelerating urbanization have led to a significant mismatch between the urban bus network allocation and the population flow. Therefore, this paper investigates this challenge by exploring the intricate relationship between the population flow dynamics, traffic congestion conditions, and the efficient allocation of bus resources. In response, two key indexes were introduced based on spatial matching patterns to assess the urban bus network: the Population-Bus Match Index evaluates the matching degree between supply and demand, and the Population-Congestion Match Index evaluates the matching degree between utilization and saturation. Additionally, two distinct optimization strategies have been proposed to enhance the urban bus network. The first optimization strategy considers the bus network's current status, while the second aspires to an idealized scenario. Subsequently, the potential contributions of each bus station in reducing CO2 emission reduction after implementing the two optimization strategies are quantified. Utilizing a case study focused on Harbin, the proposed methods are validated. The findings unveil a substantial misalignment between supply and demand within the bus network during peak periods, with nearly half of the bus stations experiencing a disparity between utilization and saturation. Comparative experiments across different optimization strategies reveal that the second optimization strategy significantly outperforms the first, but the first optimization strategy has a higher degree of CO2 emission reduction contribution. The results of this study provide decision-makers with an environmentally oriented vantage point for the discerning selection of optimization strategies and leave valuable insights for urban areas confronting transportation challenges.
Asunto(s)
Vehículos a Motor , Transportes , China , Transportes/estadística & datos numéricos , Vehículos a Motor/estadística & datos numéricos , Ciudades , Urbanización , Humanos , Emisiones de Vehículos/prevención & control , Emisiones de Vehículos/análisis , Dióxido de Carbono/análisisRESUMEN
This study investigates spoilage bacteria's impact on lipid metabolism in sturgeon fillets using UHPLC-Q-Orbitrap-MS/MS-based untargeted lipidomic analysis. A total of 4041 lipid molecules across five classes and 42 subclasses were identified, including glycerophospholipids (GPs, 50.88%), glycerolipids (GLs, 36.08%), sphingolipids (SPs, 10.47%), fatty acyls (FAs, 2.45%), and sterol lipids (STs, 0.12%). Aeromonas sobria, a specific spoilage bacterium, reduced GPs and FAs while increasing GLs, SPs, and STs via extracellular lipases and esterases. Acinetobacter albensis, the dominant bacterium, mainly elevated SPs and FAs. Their interaction promoted lipid metabolism and oxidation while producing volatile organic compounds (VOCs). Ethyl isobutyrate, ethyl propionate, isobutyl formate, pentan-2-one, propan-2-one, 2-butanone, 3-methyl-3-buten-1-ol, and dimethyl sulfide were mainly associated with Acinetobacter albensis, while 1-hexanol, 1-pentanol, 1-penten-3-ol, 1-hydroxypropan-2-one, 3-methyl-1-butanol, 2-methylbutanal, 3-hydroxy-2-butanone, and propionaldehyde were mainly related to Aeromonas sobria. This work unveils the mechanism of lipid transformation in sturgeon fillets during refrigerated storage, offering insights for aquatic products quality control.
RESUMEN
DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.
Asunto(s)
Proteína BRCA2 , Replicación del ADN , ADN de Cadena Simple , ADN , Recombinación Homóloga , Mutación , Recombinasa Rad51 , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/química , Humanos , ADN/metabolismo , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Homeostasis , Unión Proteica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Dominios Proteicos , Línea Celular Tumoral , Daño del ADN , Complejo de la Endopetidasa ProteasomalRESUMEN
Metallothionein is a cysteine-rich protein with a high metal content that is widely found in nature. In addition to heavy metal detoxification, metallothionein is well known as a potent antioxidant. The high sulfhydryl content of metallothionein confers excellent antioxidant activity, enabling it to effectively scavenge free radicals and mitigate oxidative stress damage. In addition, metallothionein can play a neuroprotective role by alleviating oxidative damage in nerve cells, have an anticancer effect by enhancing the ability of normal cells to resist unfavorable conditions through its antioxidant function, and reduce inflammation by scavenging reactive oxygen species. Due to its diverse biological functions, metallothionein has a broad potential for application in alleviating environmental heavy metal pollution, predicting and diagnosing diseases, and developing skin care products and health foods. This review summarizes the recent advances in the classification, structure, biological functions, and applications of metallothionein, focusing on its powerful antioxidant effects and related functions.
RESUMEN
Class IIa bacteriocins produced in lactic acid bacteria are short cationic peptides with antimicrobial activity. In the search for new biopreservation agents, class IIa bacteriocins are considered to be the best potential candidates, not only due to their large abundance but also because of their high biological activity and excellent thermal stability. However, regulated by the biosynthetic regulatory system, the natural class IIa bacteriocin yield is low, and the extraction process is complicated. The biotechnological production of class IIa bacteriocins in various cell factories has been attempted to improve this situation. In this review, we focus on the application of biotechnological routes for class IIa bacteriocin production. The drawbacks and improvements in the production of class IIa bacteriocins in various cell factories are discussed. Furthermore, we present the main challenge of class IIa bacteriocins, focusing on increasing their production by constructing suitable cell factories. Recombinant bacteriocins have made considerable progress from inclusion body formation, dissolved form and low antibacterial activity to yield recovery. The development of prospective cell factories for the biotechnological production of bacteriocins is still required, which may facilitate the application of bacteriocins in the food industry.
Asunto(s)
Bacteriocinas , Biotecnología , Bacteriocinas/biosíntesis , Biotecnología/métodos , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Lactobacillales/metabolismoRESUMEN
Radar networks hold great promise for monitoring population trends of migrating insects. However, it is important to elucidate the nature of responses to environmental cues. We use data from a mini-network of vertical-looking entomological radars in the southern UK to investigate changes in nightly abundance, flight altitude and behaviour of insect migrants, in relation to meteorological and celestial conditions. Abundance of migrants showed positive relationships with air temperature, indicating that this is the single most important variable influencing the decision to initiate migration. In addition, there was a small but significant effect of moonlight illumination, with more insects migrating on full moon nights. While the effect of nocturnal illumination levels on abundance was relatively minor, there was a stronger effect on the insects' ability to orientate close to downwind: flight headings were more tightly clustered on nights when the moon was bright and when cloud cover was sparse. This indicates that nocturnal illumination is important for the navigational mechanisms used by nocturnal insect migrants. Further, our results clearly show that environmental conditions such as air temperature and light levels must be considered if long-term radar datasets are to be used to assess changing population trends of migrants. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Asunto(s)
Migración Animal , Vuelo Animal , Insectos , Animales , Insectos/fisiología , Iluminación , Radar , Luna , TemperaturaRESUMEN
Long-distance migrations of insects contribute to ecosystem functioning but also have important economic impacts when the migrants are pests or provide ecosystem services. We combined radar monitoring, aerial sampling, and searchlight trapping, to quantify the annual pattern of nocturnal insect migration above the densely populated agricultural lands of East China. A total of ~9.3 trillion nocturnal insect migrants (15,000 t of biomass), predominantly Lepidoptera, Hemiptera, and Diptera, including many crop pests and disease vectors, fly at heights up to 1 km above this 600 km-wide region every year. Larger migrants (>10 mg) exhibited seasonal reversal of movement directions, comprising northward expansion during spring and summer, followed by southward movements during fall. This north-south transfer was not balanced, however, with southward movement in fall 0.66× that of northward movement in spring and summer. Spring and summer migrations were strongest when the wind had a northward component, while in fall, stronger movements occurred on winds that allowed movement with a southward component; heading directions of larger insects were generally close to the track direction. These findings indicate adaptations leading to movement in seasonally favorable directions. We compare our results from China with similar studies in Europe and North America and conclude that ecological patterns and behavioral adaptations are similar across the Northern Hemisphere. The predominance of pests among these nocturnal migrants has severe implications for food security and grower prosperity throughout this heavily populated region, and knowledge of their migrations is potentially valuable for forecasting pest impacts and planning timely management actions.
Asunto(s)
Altitud , Migración Animal , Estaciones del Año , Animales , China , Migración Animal/fisiología , Agricultura/métodos , Ecosistema , Insectos/fisiología , Viento , Vuelo Animal/fisiologíaRESUMEN
Drugs targeting the DNA damage response (DDR) are widely used in cancer therapy, but resistance to these drugs remains a major clinical challenge. Here, we show that SYCP2, a meiotic protein in the synaptonemal complex, is aberrantly and commonly expressed in breast and ovarian cancers and associated with broad resistance to DDR drugs. Mechanistically, SYCP2 enhances the repair of DNA double-strand breaks (DSBs) through transcription-coupled homologous recombination (TC-HR). SYCP2 promotes R-loop formation at DSBs and facilitates RAD51 recruitment independently of BRCA1. SYCP2 loss impairs RAD51 localization, reduces TC-HR, and renders tumors sensitive to PARP and topoisomerase I (TOP1) inhibitors. Furthermore, our studies of two clinical cohorts find that SYCP2 overexpression correlates with breast cancer resistance to antibody-conjugated TOP1 inhibitor and ovarian cancer resistance to platinum treatment. Collectively, our data suggest that SYCP2 confers cancer cell resistance to DNA-damaging agents by stimulating R-loop-mediated DSB repair, offering opportunities to improve DDR therapy.
Asunto(s)
Reparación del ADN , Estructuras R-Loop , Roturas del ADN de Doble Cadena , Recombinación Homóloga , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ADN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN por RecombinaciónRESUMEN
The roles of R-loops and RNA modifications in homologous recombination (HR) and other DNA double-stranded break (DSB) repair pathways remain poorly understood. Here, we find that DNA damage-induced RNA methyl-5-cytosine (m5C) modification in R-loops plays a crucial role to regulate PARP1-mediated poly ADP-ribosylation (PARylation) and the choice of DSB repair pathways at sites of R-loops. Through bisulfite sequencing, we discover that the methyltransferase TRDMT1 preferentially generates m5C after DNA damage in R-loops across the genome. In the absence of m5C, R-loops activate PARP1-mediated PARylation both in vitro and in cells. Concurrently, m5C promotes transcription-coupled HR (TC-HR) while suppressing PARP1-dependent alternative non-homologous end joining (Alt-NHEJ), favoring TC-HR over Alt-NHEJ in transcribed regions as the preferred repair pathway. Importantly, simultaneous disruption of both TC-HR and Alt-NHEJ with TRDMT1 and PARP or Polymerase θ inhibitors prevents alternative DSB repair and exhibits synergistic cytotoxic effects on cancer cells, suggesting an effective strategy to exploit genomic instability in cancer therapy.
Asunto(s)
Citosina , Estructuras R-Loop , Estructuras R-Loop/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ARN/genética , Reparación del ADNRESUMEN
Numerous insects including pests and beneficial species undertake windborne migrations over hundreds of kilometers. In East Asia, climate-induced changes in large-scale atmospheric circulation systems are affecting wind-fields and precipitation zones and these, in turn, are changing migration patterns. We examined the consequences in a serious rice pest, the brown planthopper (BPH, Nilaparvata lugens) in East China. BPH cannot overwinter in temperate East Asia, and infestations there are initiated by several waves of windborne spring or summer migrants originating from tropical areas in Indochina. The East Asian summer monsoon, characterized by abundant rainfall and southerly winds, is of critical importance for these northward movements. We analyzed a 42-year dataset of meteorological parameters and catches of BPH from a standardized network of 341 light-traps in South and East China. We show that south of the Yangtze River during summer, southwesterly winds have weakened and rainfall increased, while the summer precipitation has decreased further north on the Jianghuai Plain. Together, these changes have resulted in shorter migratory journeys for BPH leaving South China. As a result, pest outbreaks of BPH in the key rice-growing area of the Lower Yangtze River Valley (LYRV) have declined since 2001. We show that these changes to the East Asian summer monsoon weather parameters are driven by shifts in the position and intensity of the Western Pacific subtropical high (WPSH) system that have occurred during the last 20 years. As a result, the relationship between WPSH intensity and BPH immigration that was previously used to predict the size of the immigration to the LYRV has now broken down. Our results demonstrate that migration patterns of a serious rice pest have shifted in response to the climate-induced changes in precipitation and wind pattern, with significant consequences for the population management of migratory pests.
Asunto(s)
Hemípteros , Oryza , Tiempo (Meteorología) , China , AnimalesRESUMEN
OBJECTIVE: By using a data-driven statistical approach, we isolated the net effect of multiple government interventions that were simultaneously implemented during the second wave of COVID-19 pandemic in China. DESIGN, DATA SOURCES AND ELIGIBILITY CRITERIA: We gathered epidemiological data and government interventions data of nine cities with local outbreaks during the second wave of COVID-19 pandemic in China. We employed the Susceptible-Exposed-Infectious-Recovered (SEIR) framework model to analyse the different pathways of transmission between cities with government interventions implementation and those without. We introduced new components to the standard SEIR model and investigated five themes of government interventions against COVID-19 pandemic. DATA EXTRACTION AND SYNTHESIS: We extracted information including study objective, design, methods, main findings and implications. These were tabulated and a narrative synthesis was undertaken given the diverse research designs, methods and implications. RESULTS: Supported by extensive empirical validation, our results indicated that the net effect of some specific government interventions (including masks, environmental cleaning and disinfection, tracing, tracking and 14-day centralised quarantining close contacts) had been significantly underestimated in the previous investigation. We also identified important moderators and mediators for the effect of certain government interventions, such as closure of shopping mall and restaurant in the medium-risk level areas, etc. Linking the COVID-19 epidemiological dynamics with the implementation timing of government interventions, we detected that the earlier implementation of some specific government interventions (including targeted partial lockdown, tracing, tracking and 14-day centralised quarantining close contacts) achieved the strongest and most timely effect on controlling COVID-19, especially at the early period of local outbreak. CONCLUSIONS: These findings provide important scientific information for decisions regarding which and when government interventions should be implemented to fight against COVID-19 in China and beyond. The proposed analytical framework is useful for policy-making in future endemic and pandemic as well.
Asunto(s)
COVID-19 , Enfermedades Transmisibles , COVID-19/epidemiología , COVID-19/prevención & control , China/epidemiología , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/epidemiología , Gobierno , Humanos , Pandemias/prevención & control , SARS-CoV-2RESUMEN
The fall armyworm, Spodoptera frugiperda (J. E. Smith), is capable of long-distance migration; thus, evaluation of its flight capability is relevant to the design of monitoring and control strategies for this pest. Previous studies have quantified the flight ability of lab-reared populations under controlled conditions, but less is known about the flight capability of natural populations. In addition, the low temperature threshold for flight in natural populations also needs to be determined. In this study, the flight capability of S. frugiperda adults emerging from field-collected larvae in South China was measured by a flight mill system. The results show that the flight capability of S. frugiperda moths varied greatly between individuals, and that some adults are capable of flying great distances. The longest self-powered flight distance was 116.7 km with a cumulative flight duration of 36.51 h during a 48-h period. Typically, the flight activity of tethered individuals was relatively stable during the first 12 h, indicating that migrating moths can fly through an entire night. Based on the accumulated flight duration in the first 12 h, moths can be clearly divided into two groups (<5 h and ≥5 h flight duration), and 58% of individuals belonged to the latter group with strong migratory tendency. Further, flight activity under low temperature conditions was tested, and the results of a logit generalized linear model indicate that the low temperature flight threshold of S. frugiperda is 13.1 °C under declining temperatures. Our results provide a scientific basis for further elucidating the flight biology and migration mechanism of S. frugiperda.
RESUMEN
Spin-orbit coupling (SOC), which is the core of many condensed-matter phenomena such as nontrivial band gap and magnetocrystalline anisotropy, is generally considered appreciable only in heavy elements. This is detrimental to the synthesis and application of functional materials. Therefore, amplifying the SOC effect in light elements is crucial. Herein, focusing on 3d and 4d systems, we demonstrate that the interplay between crystal symmetry and electron correlation can significantly enhance the SOC effect in certain partially occupied orbital multiplets through the self-consistently reinforced orbital polarization as a pivot. Thereafter, we provide design principles and comprehensive databases, where we list all the Wyckoff positions and site symmetries in all two-dimensional (2D) and three-dimensional crystals that could have enhanced SOC effect. Additionally, we predict nine material candidates from our selected 2D material pool as high-temperature quantum anomalous Hall insulators with large nontrivial band gaps of hundreds of meV. Our study provides an efficient and straightforward way for predicting promising SOC-active materials, relieving the use of heavy elements for next-generation spin-orbitronic materials and devices.
RESUMEN
Migratory connectivity describes the degree of linkage between different parts of an animal's migratory range due to the movement trajectories of individuals. High connectivity occurs when individuals from one particular part of the migratory range move almost exclusively to another localized part of the migratory range with little mixing with individuals from other regions. Conversely, low migratory connectivity describes the situation where individuals spread over a wide area during migration and experience a large degree of mixing with individuals from elsewhere. The migratory connectivity concept is frequently applied to vertebrate migrants (especially birds), and it is highly relevant to conservation and management of populations. However, it is rarely employed in the insect migration literature, largely because much less is known about the migration circuits of most migratory insects than is known about birds. In this review, we discuss the applicability of the migratory connectivity concept to long-range insect migrations. In contrast to birds, insect migration circuits typically comprise multigenerational movements of geographically unstructured (non-discrete) populations between broad latitudinal zones. Also, compared to the faster-flying birds, the lower degree of control over movement directions would also tend to reduce connectivity in many insect migrants. Nonetheless, after taking account of these differences, we argue that the migratory connectivity framework can still be applied to insects, and we go on to consider postulated levels of connectivity in some of the most intensively studied insect migrants. We conclude that a greater understanding of insect migratory connectivity would be of value for conserving threatened species and managing pests.
RESUMEN
Large migrating insects, flying at high altitude, often exhibit complex behaviour. They frequently elect to fly on winds with directions quite different from the prevailing direction, and they show a degree of common orientation, both of which facilitate transport in seasonally beneficial directions. Much less is known about the migration behaviour of smaller (10-70 mg) insects. To address this issue, we used radar to examine the high-altitude flight of hoverflies (Diptera: Syrphidae), a group of day-active, medium-sized insects commonly migrating over the UK. We found that autumn migrants, which must move south, did indeed show migration timings and orientation responses that would take them in this direction, despite the unfavourability of the prevailing winds. Evidently, these hoverfly migrants must have a compass (probably a time-compensated solar mechanism), and a means of sensing the wind direction (which may be determined with sufficient accuracy at ground level, before take-off). By contrast, hoverflies arriving in the UK in spring showed weaker orientation tendencies, and did not correct for wind drift away from their seasonally adaptive direction (northwards). However, the spring migrants necessarily come from the south (on warm southerly winds), so we surmise that complex orientation behaviour may not be so crucial for the spring movements.
Asunto(s)
Dípteros/fisiología , Vuelo Animal , Migración Animal , Animales , Insectos , Orientación Espacial , VientoRESUMEN
BACKGROUND: The fall armyworm (FAW), an invasive pest from the Americas, is rapidly spreading through the Old World, and has recently invaded the Indochinese Peninsula and southern China. In the Americas, FAW migrates from winter-breeding areas in the south into summer-breeding areas throughout North America where it is a major pest of corn. Asian populations are also likely to evolve migrations into the corn-producing regions of eastern China, where they will pose a serious threat to food security. RESULTS: To evaluate the invasion risk in eastern China, the rate of expansion and future migratory range was modelled by a trajectory simulation approach, combined with flight behavior and meteorological data. Our results predict that FAW will migrate from its new year-round breeding regions into the two main corn-producing regions of eastern China (Huang-Huai-Hai Summer Corn and Northeast Spring Corn Regions), via two pathways. The western pathway originates in Myanmar and Yunnan, and FAW will take four migration steps (i.e. four generations) to reach the Huang-Huai-Hai Region by July. Migration along the eastern pathway from Indochina and southern China progresses faster, with FAW reaching the Huang-Huai-Hai Region in three steps by June and reaching the Northeast Spring Region in July. CONCLUSION: Our results indicate that there is a high risk that FAW will invade the major corn-producing areas of eastern China via two migration pathways, and cause significant impacts to agricultural productivity. Information on migration pathways and timings can be used to inform integrated pest management strategies for this emerging pest. © 2019 Society of Chemical Industry.
Asunto(s)
Migración Animal , Spodoptera/fisiología , Animales , China , Mianmar , América del Norte , Zea maysRESUMEN
Despite the fact that migratory insects dominate aerial bioflows in terms of diversity, abundance, and biomass [1-6], the migration patterns of most species, and the effects of their annual fluxes between high- and low-latitude regions, are poorly known. One important group of long-range migrants that remain understudied is a suite of highly beneficial species of hoverfly in the tribe Syrphini, which we collectively term "migrant hoverflies." Adults are key pollinators [7-10] and larvae are significant biocontrol agents of aphid crop pests [11], and thus, it is important to quantify the scale of their migrations and the crucial ecosystem services they provide with respect to energy, nutrient, and biomass transport; regulation of crop pests; and pollen transfer. Such assessments cannot be made by sporadic observations of mass arrivals at ground level, because hoverflies largely migrate unnoticed high above ground. We used insect-monitoring radars [12] to show that up to 4 billion hoverflies (80 tons of biomass) travel high above southern Britain each year in seasonally adaptive directions. The long-range migrations redistribute tons of essential nutrients (nitrogen [N] and phosphorus [P]) and transport billions of pollen grains between Britain and Europe, and locally produced populations consume 6 trillion aphids and make billions of flower visits. Migrant hoverfly abundance fluctuated greatly between years, but there was no evidence of a population trend during the 10-year study period. Considering that many beneficial insects are seriously declining [7, 10, 13-19], our results demonstrate that migrant hoverflies are key to maintaining essential ecosystem services.
Asunto(s)
Migración Animal , Protección de Cultivos , Productos Agrícolas , Dípteros , Polinización , Animales , Ecosistema , InglaterraRESUMEN
Using the elastic band method based on first-principles calculations, we have carefully studied the catalytic properties of B, N, and their co-doped fullerenes. During oxidization of CO, both C59B and C59N can be oxidized to form durable oxide catalysts for successive CO oxidizations, the rate determining steps of which have 0.59 and 0.80 eV barriers, respectively. In CO-rich conditions, the C59N may remain in the entire reaction cycle with a 0.44 eV rate determining barrier. Both BN-pair doped fullerene and B-rich B3N doped fullerene can also be oxidized during the process of catalyzing CO oxidizations, and the oxides can then be repeatedly used as catalysts in successive CO oxidizations with rate determining barriers of approximately 0.42 eV. The central B in the N-rich C56BN3 is protected by its surrounding N atoms against oxidization to remain as a durable catalyst, the rate determining barrier of which is 0.63 eV for catalyzing CO oxidization. These results for the B and N doped fullerenes, and especially for the B-N co-doped fullerenes, could help in the design of high-performance non-metal catalysts, calling for further detailed experimental investigations.
RESUMEN
Actively transcribed regions of the genome are protected by transcription-coupled DNA repair mechanisms, including transcription-coupled homologous recombination (TC-HR). Here we used reactive oxygen species (ROS) to induce and characterize TC-HR at a transcribed locus in human cells. As canonical HR, TC-HR requires RAD51. However, the localization of RAD51 to damage sites during TC-HR does not require BRCA1 and BRCA2, but relies on RAD52 and Cockayne Syndrome Protein B (CSB). During TC-HR, RAD52 is recruited by CSB through an acidic domain. CSB in turn is recruited by R loops, which are strongly induced by ROS in transcribed regions. Notably, CSB displays a strong affinity for DNA:RNA hybrids in vitro, suggesting that it is a sensor of ROS-induced R loops. Thus, TC-HR is triggered by R loops, initiated by CSB, and carried out by the CSB-RAD52-RAD51 axis, establishing a BRCA1/2-independent alternative HR pathway protecting the transcribed genome.