Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(6): e0199623, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37938001

RESUMEN

IMPORTANCE: Gut microbiota varies along the gastrointestinal (GI) tract and exerts profound influences on the host's physiology, immunity, and nutrition. Given that gut microbes interact with the host closely and the gastrointestinal function differed from the small to the large intestine, it is essential to characterize the gut biogeography of the microbial community. Here, we focused on intestinal bacteria and fungi in cynomolgus monkeys and determined their spatial distribution along the GI tract by performing 16S and 18S rRNA gene sequencing. The composition and function of bacterial and fungal communities differed significantly at different biogeographic sites of the intestine, and the site-specific correlations between intestinal bacteria and fungi were revealed. Thus, our studies characterized the gut biogeography of bacteria and fungi in NHPs and revealed their site-specific correlations along the GI tract.


Asunto(s)
Microbiota , Micobioma , Animales , Macaca fascicularis/genética , Bacterias/genética , Hongos/genética , Intestinos , ARN Ribosómico 16S/genética , Tracto Gastrointestinal/microbiología
2.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
3.
Viruses ; 15(7)2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37515223

RESUMEN

Simian retrovirus subtype 8 (SRV-8) infections have been reported in cynomolgus monkeys (Macaca fascicularis) in China and America, but its pathogenicity and immunogenicity are rarely reported. In this work, the SRV-8-infected monkeys were identified from the monkeys with anemia, weight loss, and diarrhea. To clarify the impact of SRV-8 infection on cynomolgus monkeys, infected monkeys were divided into five groups according to disease progression. Hematoxylin (HE) staining and viral loads analysis showed that SRV-8 mainly persisted in the intestine and spleen, causing tissue damage. Additionally, the dynamic variations of blood routine indexes, innate and adaptive immunity, and the transcriptomic changes in peripheral blood cells were analyzed during SRV-8 infection. Compared to uninfected animals, red blood cells, hemoglobin, and white blood cells were reduced in SRV-8-infected monkeys. The percentage of immune cell populations was changed after SRV-8 infection. Furthermore, the number of hematopoietic stem cells decreased significantly during the early stages of SRV-8 infection, and returned to normal levels after antibody-mediated viral clearance. Finally, global transcriptomic analysis in PBMCs from SRV-8-infected monkeys revealed distinct gene expression profiles across different disease stages. In summary, SRV-8 infection can cause severe pathogenicity and immune disturbance in cynomolgus monkeys, and it might be responsible for fatal virus-associated immunosuppressive syndrome.


Asunto(s)
Betaretrovirus , Infecciones por Retroviridae , Retrovirus de los Simios , Animales , Macaca fascicularis , Infecciones por Retroviridae/veterinaria , Virulencia , Betaretrovirus/genética
4.
Innovation (Camb) ; 4(3): 100436, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37215523

RESUMEN

Genomic imprinting can lead to allele-specific expression (ASE), where one allele is preferentially expressed more than the other. Perturbations in genomic imprinting or ASE genes have been widely observed across various neurological disorders, notably autism spectrum disorder (ASD). In this study, we crossed rhesus cynomolgus monkeys to produce hybrid monkeys and established a framework to evaluate their allele-specific gene expression patterns using the parental genomes as a reference. Our proof-of-concept analysis of the hybrid monkeys identified 353 genes with allele-biased expression in the brain, enabling us to determine the chromosomal locations of ASE clusters. Importantly, we confirmed a significant enrichment of ASE genes associated with neuropsychiatric disorders, including ASD, highlighting the potential of hybrid monkey models in advancing our understanding of genomic imprinting.

5.
Cell Rep ; 42(3): 112183, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36857177

RESUMEN

Circadian oscillation of gut microbiota exerts significant influence on host physiology, but the host factors that sustain microbial oscillations are rarely reported. We compared the gut microbiome and metabolome of wild-type and BMAL1-deficient cynomolgus monkeys during a diurnal cycle by performing 16S rRNA sequencing and untargeted fecal metabolomics and uncovered the influence of intestinal H2O2 on microbial compositions. Ablation of BMAL1 induced expansion of Bacteroidota at midnight and altered microbial oscillations. Some important fecal metabolites changed significantly, and we investigated their correlations with microbes. Further analyses revealed that disturbed rhythmicity of NOX1-derived intestinal H2O2 was responsible for the altered microbial oscillations in BMAL1-deficient monkeys. Mechanistic studies showed that BMAL1 transactivated NOX1 via binding to the E1-E2 site in its promoter. Notably, BMAL1-dependent activation of NOX1 was conserved in cynomolgus monkeys and humans. Our study demonstrates the importance of intestine clock-controlled H2O2 rhythmicity on the rhythmic oscillation of gut microbiota.


Asunto(s)
Ritmo Circadiano , Microbioma Gastrointestinal , Animales , Humanos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano/fisiología , Microbioma Gastrointestinal/fisiología , Peróxido de Hidrógeno/farmacología , Macaca fascicularis , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA