RESUMEN
African swine fever virus (ASFV) is a nuclear cytoplasmic large DNA virus (NCLDV) that causes devastating hemorrhagic diseases in domestic pigs and wild boars, seriously threatening the development of the global pig industry. IFN-I plays an important role in the body's antiviral response. Similar to other DNA viruses, ASFV has evolved a variety of immune escape strategies to antagonize IFN-I signaling and maintain its proliferation. In this study, we showed that the ASFV early protein pK205R strongly inhibited interferon-stimulated genes (ISGs) as well as the promoter activity of IFN-stimulated regulatory elements (ISREs). Mechanistically, pK205R interacted with the intracellular domains of IFNAR1 and IFNAR2, thereby inhibiting the interaction of IFNAR1/2 with JAK1 and TYK2 and hindering the phosphorylation and nuclear translocation of STATs. Subsequently, we generated a recombinant strain of the ASFV-pK205R point mutation, ASFV-pK205R7PM. Notably, we detected higher levels of ISGs in porcine alveolar macrophages (PAMs) than in the parental strain during the early stages of ASFV-pK205R7PM infection. Moreover, ASFV-pK205R7PM attenuated the inhibitory effect on IFN-I signaling. In conclusion, we identified a new ASFV immunosuppressive protein that increases our understanding of ASFV immune escape mechanisms.
Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Inmunidad Innata , Interferón Tipo I , Transducción de Señal , Animales , Virus de la Fiebre Porcina Africana/inmunología , Porcinos , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Transducción de Señal/inmunología , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Evasión Inmune , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , HumanosRESUMEN
African swine fever (ASF) is an acute and devastating infectious disease that has caused significant economic losses to the global pig industry since it was first discovered and reported. African swine fever virus (ASFV) has a large genome encoding more than 160 proteins. The biological characteristics and functions of its various proteins still remain unclear; therefore, the efficacy of specific drugs and vaccines against ASFV remains limited. ASFV pCP312R is an important ASFV protein that exhibits good immunogenicity. In this study, five monoclonal antibodies (mAbs) targeting pCP312R were successfully prepared. Confocal microscopy observations showed that pCP312R was located in the viral factory at the late stage of ASFV infection, and was co-located with p30 and pK205R. These results suggested that pCP312R might be involved in ASFV assembly. Neutralization tests revealed that pCP312R mAb could not neutralize ASFV. Next, we identified the B cell epitopes of one of the most immunogenic mAbs and found a novel epitope of pCP312R, 72TIPPSTDEEVIR83, which was conserved in different pCP312R strains. Overall, five ASFV pCP312R monoclonal antibodies were prepared, and the antigenic epitope of one strain was identified in this study, laying a foundation for further studies on ASFV pCP312R function and facilitating serological diagnosis vaccine development for ASFV.
RESUMEN
Stomatal movement plays a critical role in plant immunity by limiting the entry of pathogens. OPEN STOMATA 1 (OST1) is a key component that mediates stomatal closure in plants, however, how OST1 functions in response to pathogens is not well understood. RECEPTOR-LIKE KINASE 902 (RLK902) phosphorylates BRASSINOSTEROID-SIGNALING KINASE 1 (BSK1) and positively modulates plant resistance. In this study, by a genome-wide phosphorylation analysis, we found that the phosphorylation of BSK1 and OST1 was missing in the rlk902 mutant compared with the wild-type plants, indicating a potential connection between the RLK902-BSK1 module and OST1-mediated stomatal closure. We showed that RLK902 and BSK1 contribute to stomatal immunity, as the stomatal closure induced by the bacterial pathogen Pto DC3000 was impaired in rlk902 and bsk1-1 mutants. Stomatal immunity mediated by RLK902 was dependent on BSK1 phosphorylation at Ser230, a key phosphorylation site for BSK1 functions. Several phosphorylation sites of OST1 were important for RLK902- and BSK1-mediated stomatal immunity. Interestingly, the phosphorylation of Ser171 and Ser175 in OST1 contributed to the stomatal immunity mediated by RLK902 but not by BSK1, while phosphorylation of OST1 at Ser29 and Thr176 residues was critical for BSK1-mediated stomatal immunity. Taken together, these results indicate that RLK902 and BSK1 contribute to disease resistance via OST1-mediated stomatal closure. This work revealed a new function of BSK1 in activating stomatal immunity, and the role of RLK902-BSK1 and OST1 module in regulating pathogen-induced stomatal movement.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , Estomas de Plantas , Proteínas Quinasas , Estomas de Plantas/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Arabidopsis/inmunología , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , MutaciónRESUMEN
Although three-dimensional visual training (3DVT) has been used for myopia intervention, its neural mechanisms remain largely unknown. In this study, visual function was examined before and after 3DVT, while resting-state EEG-fNIRS signals were recorded from 38 myopic participants. A graph theoretical analysis was applied to compute the neurovascular properties, including static brain networks (SBNs), dynamic brain networks (DBNs), and dynamic neurovascular coupling (DNC). Correlations between the changes in neurovascular properties and the changes in visual functions were calculated. After 3DVT, the local efficiency and node efficiency in the frontal lobes increased in the SBNs constructed from EEG δ -band; the global efficiency and node efficiency in the frontal-parietal lobes decreased in the DBNs variability constructed from EEG δ -band. For the DNC constructed with EEG α -band and oxyhemoglobin (HbO), the local efficiency decreased, for EEG α -band and deoxyhemoglobin (HbR), the node efficiency in the frontal-occipital lobes decreased. For the SBNs constructed from HbO, the functional connectivity (FC) between the frontal-occipital lobes increased. The DNC constructed between the FC of the frontal-parietal lobes from EEG ß -band and the FC of the frontal-occipital lobes from HbO increased, and between the FC of the frontal-occipital lobes from EEG ß -band and the FC of the inter-frontal lobes from HbR increased. The neurovascular properties were significantly correlated with the amplitude of accommodation and accommodative facility. The result indicated the positive effects of 3DVT on myopic participants, including improved efficiency of brain networks, increased FC of SBNs and DNC, and enhanced binocular accommodation functions.
Asunto(s)
Acomodación Ocular , Electroencefalografía , Miopía , Espectroscopía Infrarroja Corta , Visión Binocular , Humanos , Masculino , Femenino , Miopía/fisiopatología , Miopía/rehabilitación , Visión Binocular/fisiología , Acomodación Ocular/fisiología , Adulto Joven , Adulto , Lóbulo Parietal/fisiopatología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Frontal/fisiopatología , Acoplamiento Neurovascular/fisiología , Oxihemoglobinas/metabolismo , Red Nerviosa/fisiopatología , Hemoglobinas/metabolismo , Hemoglobinas/análisis , Adaptación Fisiológica , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Lóbulo Occipital/fisiopatologíaRESUMEN
Working memory load (WML) is one of the widely applied signals in the areas of human-machine interaction. The precise evaluation of the WML is crucial for this kind of application. This study aims to propose a deep learning (DL) time series classification (TSC) model for inter-subject WML decoding. We used fNIRS to record the hemodynamic signals of 27 participants during visual working memory tasks. Traditional machine learning and deep time series classification algorithms were respectively used for intra-subject and inter-subject WML decoding from the collected blood oxygen signals. The intra-subject classification accuracy of LDA and SVM were 94.6% and 79.1%. Our proposed TAResnet-BiLSTM model had the highest inter-subject WML decoding accuracy, reaching 92.4%. This study provides a new idea and method for the brain-computer interface application of fNIRS in real-time WML detection.
RESUMEN
African swine fever virus (ASFV) causes severe disease in domestic pigs and wild boars, seriously threatening the development of the global pig industry. Type I interferon (IFN-I) is an important component of innate immunity, inducing the transcription and expression of antiviral cytokines by activating Janus-activated kinase-signal transducer and activator of transcription (STAT). However, the underlying molecular mechanisms by which ASFV antagonizes IFN-I signaling have not been fully elucidated. Therefore, using coimmunoprecipitation, confocal microscopy, and dual luciferase reporter assay methods, we investigated these mechanisms and identified a novel ASFV immunosuppressive protein, pB475L, which interacts with the C-terminal domain of STAT2. Consequently, pB475L inhibited IFN-I signaling by inhibiting STAT1 and STAT2 heterodimerization and nuclear translocation. Furthermore, we constructed an ASFV-B475L7PM mutant strain by homologous recombination, finding that ASFV-B475L7PM attenuated the inhibitory effects on IFN-I signaling compared to ASFV-WT. In summary, this study reveals a new mechanism by which ASFV impairs host innate immunity.
Asunto(s)
Virus de la Fiebre Porcina Africana , Inmunidad Innata , Interferón Tipo I , Factor de Transcripción STAT2 , Transducción de Señal , Proteínas Virales , Animales , Humanos , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Células HEK293 , Evasión Inmune , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/metabolismo , Factor de Transcripción STAT2/genética , Porcinos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/inmunologíaRESUMEN
Microwave resonators combined with polymer absorption layers are widely used in volatile organic compound (VOC) detection based on their variable resonant frequencies. However, the response time is limited due to the polymer's slow volumetric absorption of VOC molecules. By constructing a porous structure in Polydimethylsiloxane (PDMS), resulting in reduced the response time to as short as 71.1%. To mitigate the sensitivity decline caused by the porous PDMS, a trenched-substrate complementary split-ring resonator (CSRR) is proposed for enhancing the interaction between the electromagnetic fields (EMFs) and the porous PDMS with VOCs. The removal of the substrate beneath CSRR's sensing region enhances the effective EMF, increasing frequency and amplitude sensitivities up to 175.5% and 137.8%, respectively. Responses to four common VOCs by the sensor show a maximum sensitivity of 217 Hz/ppm and a minimum limit of detection of 295 ppm. Additionally, resonant parameters and extracted lumped parameters are utilized to establish two decision-tree-based VOC classification models, achieving high accuracies of 98.71% and 99.59%, respectively. And the latter one fully utilizing responses throughout the swept band, proves superior in identifying similar substances. This sensor technology helps promote the sensitive detection and accurate classification of diverse VOCs.
RESUMEN
Heterojunctions play a crucial role in improving the absorption of visible light and performance of photocatalysts for organic contaminants degradation in water. In this work, a novel type-II-II Ag2CO3/Bi2WO6 (AB) heterojunction was synthesized by hydrothermal reaction and in situ-precipitation methods. The mechanisms of charge transfer and carrier separation at the interface of heterojunctions and the influence on the photocatalytic activity were investigated. The degradation of levofloxacin (LEV) under visible light irradiation was employed to evaluate the photocatalytic performance of AB. The results showed that 85.4% LEV was degraded by AB, which was 1.38 and 1.39 times higher than that of Bi2WO6 and Ag2CO3, respectively. The work functions of the different crystal planes in the AB heterojunction, which was calculated by density functional theory, are a significant difference. The Fermi energy (Ef) of Ag2CO3 (- 6.005 eV) is lower than Bi2WO6 (- 3.659 eV), but the conduction band (CB) is higher. Therefore, using AB heterojunctions as an example, the research explored the mechanism of type-II-II which CB and Ef of one semiconductor cannot simultaneously surpass those of another material, based on the built-in electric field theory. Through this analysis, a deeper understanding of type-II heterojunctions was achieved, and providing valuable insights into the behavior of this specific heterojunction system.
RESUMEN
OBJECTIVE: Primary angiitis of the central nervous system (PACNS) is a rare vasculitis restricted to the brain, spinal cord, and leptomeninges. This study aimed to describe the imaging characteristics of patients with small vessel PACNS (SV-PACNS) using 7 T magnetic resonance imaging (MRI). METHODS: This ongoing prospective observational cohort study included patients who met the Calabrese and Mallek criteria and underwent 7 T MRI scan. The MRI protocol includes T1-weighted magnetization-prepared rapid gradient echo imaging, T2 star weighted imaging, and susceptibility-weighted imaging. Two experienced readers independently reviewed the neuroimages. Clinical data were extracted from the electronic patient records. The findings were then applied to a cohort of patients with large vessel central nervous system (CNS) vasculitis. RESULTS: We included 21 patients with SV-PACNS from December 2021 to November 2023. Of these, 12 (57.14%) had cerebral cortical microhemorrhages with atrophy. The pattern with microhemorrhages was described in detail based on the gradient echo sequence, leading to the identification of what we have termed the "coral-like sign." The onset age of patients with coral-like sign (33.83 ± 9.93 years) appeared younger than that of patients without coral-like sign (42.11 ± 14.18 years) (P = 0.131). Furthermore, the cerebral lesions in patients with cortical microhemorrhagic SV-PACNS showed greater propensity toward bilateral lesions (P = 0.03). The coral-like sign was not observed in patients with large vessel CNS vasculitis. INTERPRETATION: The key characteristics of the coral-like sign represent cerebral cortical diffuse microhemorrhages with atrophy, which may be an important MRI pattern of SV-PACNS. ANN NEUROL 2024;96:194-203.
Asunto(s)
Imagen por Resonancia Magnética , Vasculitis del Sistema Nervioso Central , Humanos , Masculino , Femenino , Vasculitis del Sistema Nervioso Central/diagnóstico por imagen , Vasculitis del Sistema Nervioso Central/patología , Vasculitis del Sistema Nervioso Central/complicaciones , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/patología , Adulto Joven , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Estudios de Cohortes , AdolescenteRESUMEN
In recent years, biomedical optics technology has developed rapidly. The current widespread use of biomedical optics was made possible by the invention of optical instruments. The advantages of being non-invasive, portable, effective, low cost, and less susceptible to system noise have led to the rapid development of functional near-infrared spectroscopy (fNIRS) technology for hemodynamics detection, especially in the field of functional brain imaging. At the same time, laboratories and companies have developed various fNIRS-based systems. The safety, stability, and efficacy of fNIRS systems are key performance indicators. However, there is still a lack of comprehensive and systematic evaluation methods for fNIRS instruments. This study uses the fNIRS system developed in our laboratory as the test object. The test method established in this study includes system validation and performance testing to comprehensively assess fNIRS systems' reliability. These methods feature low cost and high practicality. Based on this study, existing or newly developed systems can be comprehensively and easily evaluated in the laboratory or workspace.
Asunto(s)
Tecnología Biomédica , Espectroscopía Infrarroja Corta , Humanos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , LaboratoriosRESUMEN
BACKGROUND: Although trigeminal nerve involvement is a characteristic of multiple sclerosis (MS), its prevalence across studies varies greatly due to MRI resolution and cohort selection bias. The mechanism behind the site specificity of trigeminal nerve injury is still unclear. We aim to determine the prevalence of trigeminal nerve involvement in patients with MS in a consecutive 7T brain MRI cohort. METHODS: This observational cohort originates from an ongoing China National Registry of Neuro-Inflammatory Diseases. Inclusion criteria were the following: age 18 years or older, diagnosis of MS according to the 2017 McDonald criteria and no clinical relapse within the preceding 3 months. Each participant underwent 7T MAGNETOM Terra scanner (Siemens, Erlangen, Germany), using a 32-channel phased array coil at Beijing Tiantan Hospital. T1-weighted magnetisation-prepared rapid acquisition gradient echoes, fluid-attenuated inversion recovery (FLAIR) and fluid and white matter suppression images were used to identify lesions. FLAIR* and T2* weighted images were used to identify central vein sign (CVS) within the trigeminal lesions. RESULTS: 120 patients underwent 7T MRI scans between December 2021 and May 2023. 19/120 (15.8%) patients had a total of 45 trigeminal lesions, of which 11/19 (57.9%) were bilateral. The linear lesions extended along the trigeminal nerve, from the root entry zone (REZ) (57.8%, 26/45) to the pontine-medullary nucleus (42.2%, 19/45). 26.9% (7/26) of the lesions in REZ showed a typical central venous sign. CONCLUSION: In this 7T MRI cohort, the prevalence of trigeminal nerve involvement was 15.8%. Characteristic CVS was detected in 26.9% of lesions in REZ. This suggests an inflammatory demyelination mechanism of trigeminal nerve involvement in MS.
Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Nervio Trigémino , Humanos , Masculino , Femenino , Adulto , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Persona de Mediana Edad , Nervio Trigémino/diagnóstico por imagen , Nervio Trigémino/patología , Estudios de Cohortes , Enfermedades del Nervio Trigémino/diagnóstico por imagen , Adulto JovenRESUMEN
Metal-organic frameworks (MOFs) have great potential in quartz crystal microbalance (QCM) platforms for volatile organic compound (VOCs) detection and recognition due to their unique properties. However, the MOFs' hydrophilicity degrades performance in high-humidity environments, limiting reliable VOC sensing in complex environments. Herein, we propose a novel VOC virtual sensor array (VSA) using a single QCM sensor with an adsorption layer composed of MIL-101(Cr) MOF and polydimethylsiloxane (PDMS), realizing stable sensing and accurate identification for different VOCs under various relative humidity (RH) conditions. The hydrophobic PDMS layer improves the moisture resistance of the sensor to 4 and 14 times in terms of shifts in resonant frequency and scattering parameters, respectively. In addition, performance is maintained over 2 days of water treatment, demonstrating superior water resistance. The highest sensitivity of 2.68 mdB ppm-1 is achieved for isopropanol detection, with the lowest limit of detection of 20.06 ppm for acetone. Combining resonant signals and lumped parameters, the proposed VSA technique effectively discriminates four VOCs (ethanol, 2-propanol, acetone, and acetonitrile) with a high accuracy of 95.3% under both 60% and 90% RH backgrounds. The studies provide a promising solution for reliable low-concentration VOC detection using QCM sensors in high-humidity environments such as underground spaces.
RESUMEN
OBJECTIVE: To characterize the susceptibility-weighted image (SWI) features including paramagnetic rim and nodular lesions with signal intensity changes and central vein sign (CVS) associated with aquaporin 4 (AQP4)-immunoglobulin G (IgG)-negative neuromyelitis optica spectrum disorder (NMOSD), and explore whether they can be used as potential imaging biomarkers for differentiating multiple sclerosis (MS) from this disorder. METHODS: We prospectively recruited NMOSD with AQP4-IgG-negative (AQP4- NMOSD) and IgG-positive (AQP4+ NMOSD), and MS subjects from the Clinical and Imaging Patterns of Neuroinflammation Diseases in China (CLUE) project (NCT0410683) between 2019 and 2021. The SWI features including paramagnetic rim and nodular lesions with signal intensity changes and CVS were analyzed and compared among groups, and the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for distinguishing MS from AQP4- NMOSD. RESULTS: We enrolled a total of 160 consecutive patients (22 AQP4- NMOSD, 65 AQP4+ NMOSD, and 73 MS). We observed paramagnetic rim lesion (0/120 lesions, 0 %) and nodular (1/120, 1 %) lesions with hypointense signals on SWI in the AQP4- NMOSD group. These characteristics were similar to those recorded from AQP4+ NMOSD patients (rim: 0/369 lesions, 0 %, P = 1.000; nodular: 10/369 lesions, 2.7 %, P = 1.000), but differed significantly from those observed in the MS group (rim: 162/1665 lesions, 9.7 %, P<0.001; nodular: 392/1665 lesions, 23.5 %, P < 0.001). AQP4- NMOSD patients had fewer average CVS+ rate (12 %) than MS patients (46 %, p<0.001), similar to AQP4+ NMOSD (13 %, p = 1.000). The SWI imaging features denoting lesions with paramagnetic rim or nodular hypointense SWI signals showed 90.4 % sensitivity, 95.5 % specificity, 98.5 % PPV, and 75 % NPV, and the criteria with≥3 CVS lesions showed sensitivity of 91.8 %, specificity of 90.9 %%, PPV of 97.1 %, and NPV of 76.9 % in distinguishing MS from AQP4- NMOSD. DISCUSSION: The SWI imaging features including lesions with paramagnetic rim or nodular hypointense SWI signals and 3 CVS lesions carries useful information in distinguishing MS from AQP4- NMOSD.
Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/diagnóstico , Autoanticuerpos , Esclerosis Múltiple/diagnóstico , Acuaporina 4 , Inmunoglobulina GRESUMEN
Bipolar depression (BD) is a chronic psychiatric disorder characterized by recurring bouts of bipolar mania or hypomania followed by depression. In this essay, we used the functional near-infrared spectroscopy to investigate the frontal function of BD in males and females, which included a total of 43 BD patients and 28 healthy subjects. The hemodynamic response associated with the task was estimated using the generalized linear model (GLM) approach. Wavelet transforms coherence and Granger causality (GC) methods were employed to calculate brain connectivity. GLM and GC results revealed that female patients were more distinguishable from healthy controls than males. Additionally, the correlation between BD scores and GLM results showed that the brain activation of male subjects was affected by their anxiety levels. This study suggests that traditional diagnostic methods for BD may not be as sensitive in men as in women.
Asunto(s)
Trastorno Bipolar , Humanos , Masculino , Femenino , Trastorno Bipolar/diagnóstico por imagen , Corteza Prefrontal , Análisis Espectral , Encéfalo , Imagen por Resonancia Magnética/métodosRESUMEN
Unnatural chiral α-tertiary amino acids containing two different carbon-based substituents at the α-carbon centre are widespread in biologically active molecules. This sterically rigid scaffold is becoming a growing research interest in drug discovery. However, a robust protocol for chiral α-tertiary amino acid synthesis remains scarce due to the challenge of stereoselectively constructing sterically encumbered tetrasubstituted stereogenic carbon centres. Herein we report a cobalt-catalysed enantioselective aza-Barbier reaction of ketimines with various unactivated alkyl halides, including alkyl iodides, alkyl bromides and alkyl chlorides, enabling the formation of chiral α-tertiary amino esters with a high level of enantioselectivity and excellent functional group tolerance. Primary, secondary and tertiary organoelectrophiles are all tolerated in this asymmetric reductive addition protocol, which provides a complementary method for the well-exploited enantioselective nucleophilic addition with moisture- and air-sensitive organometallic reagents. Moreover, the three-component transformation of α-ketoester, amine and alkyl halide represents a formal asymmetric deoxygenative alkylamination of the carbonyl group.
RESUMEN
Cytochrome P450 (CYP)1B1 has been identified to be specifically overexpressed in several solid tumors, thus it's a potential target for the detection of tumors. Based on the 2-Phenylquinazolin CYP1B1 inhibitors, we designed and synthesized several positron emission computed tomography (PET) imaging probes targeting CYP1B1. Through IC50 determinations, most of these probes exhibited good affinity and selectivity to CYP1B1. Considering their affinity, solubility, and their 18F labeling methods, we chose compound 5c as the best candidate. The 18F radiolabeling of [18F] 5c was easy to handle with good radiolabeling yield and radiochemical purity. In vitro and in vivo stability study indicated that probe [18F]5c has good stability. In cell binding assay, [18F]5c could be specifically taken up by tumor cells, especially HCT-116 cells. Although the tumor-blood (T/B) and tumor-muscle (T/M) values and PET imaging results were unsatisfied, it is still possible to develop PET probes targeting CYP1B1 by structural modification on the basis of 5c in the future.
Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacología , Radiofármacos/química , Radioisótopos de FlúorRESUMEN
The pathogenesis of depression is unclear, and it responds poorly to treatment. It is thus urgent to identify the pathogenesis of depression and possible therapeutic targets. There may be interactions between insulin resistance (IR) and depression. The purpose of this study was to explore the relationship between depression, triglyceride glucose (TyG) index. The study participants were 198 middle-aged and elderly patients who were admitted to the Hebei General Hospital between January 1, 2021, and August 31, 2022, together with 189 healthy adults as controls. Depression was diagnosed according to ICD-10 diagnostic criteria for depression. IR was assessed by the TyG index. Compared with the control group, patients suffering from depression had higher TyG index (Pâ =â .00); There were significant differences in the sex ratio (Pâ =â .00), family history (Pâ =â .00), body mass index (Pâ =â .008), total cholesterol (Pâ =â .00), fasting blood glucose (Pâ =â .004), high-density lipoprotein (Pâ =â .00), and low-density lipoprotein (Pâ =â .001) levels between the 2 groups. After excluding other confounding factors, the TyG index was found to be independently associated with depression, with an OR of 2.75. These data support an association of depression with the TyG index. IR thus appears to be a risk factor for depression.
Asunto(s)
Glucosa , Resistencia a la Insulina , Anciano , Persona de Mediana Edad , Humanos , Adulto , Triglicéridos , Estudios Transversales , Glucemia , Depresión/epidemiología , BiomarcadoresRESUMEN
Introduction: Conflict monitoring and processing is an important part of the human cognitive system, it plays a key role in many studies of cognitive disorders. Methods: Based on a Chinese word-color match Stroop task, which included incongruent and neutral stimuli, the Electroencephalogram (EEG) and functional Near-infrared Spectroscopy (fNIRS) signals were recorded simultaneously. The Pearson correlation coefficient matrix was calculated to analyze brain connectivity based on EEG signals. Granger Causality (GC) method was employed to analyze the effective connectivity of bilateral frontal lobes. Wavelet Transform Coherence (WTC) was used to analyze the functional connectivity of the bilateral hemisphere and ipsilateral hemisphere. Results: Results indicated that brain connectivity analysis on EEG signals did not show any significant lateralization, while fNIRS analysis results showed the frontal lobes especially the left frontal lobe play the leading role in dealing with conflict tasks. The human brain shows leftward lateralization while processing the more complicated incongruent stimuli. This is demonstrated by the higher functional connectivity in the left frontal lobe and the information flow from the left frontal lobe to the right frontal lobe. Discussion: Our findings in brain connectivity during cognitive conflict processing demonstrated that the dual modality method combining EEG and fNIRS is a valuable tool to excavate more information through cognitive and physiological studies.
RESUMEN
In clinical settings, most automatic recognition systems use visual or sensory data to recognize activities. These systems cannot recognize activities that rely on verbal assessment, lack visual cues, or do not use medical devices. We examined speech-based activity and activity-stage recognition in a clinical domain, making the following contributions. (1) We collected a high-quality dataset representing common activities and activity stages during actual trauma resuscitation events-the initial evaluation and treatment of critically injured patients. (2) We introduced a novel multimodal network based on audio signal and a set of keywords that does not require a high-performing automatic speech recognition (ASR) engine. (3) We designed novel contextual modules to capture dynamic dependencies in team conversations about activities and stages during a complex workflow. (4) We introduced a data augmentation method, which simulates team communication by combining selected utterances and their audio clips, and showed that this method contributed to performance improvement in our data-limited scenario. In offline experiments, our proposed context-aware multimodal model achieved F1-scores of 73.2±0.8% and 78.1±1.1% for activity and activity-stage recognition, respectively. In online experiments, the performance declined about 10% for both recognition types when using utterance-level segmentation of the ASR output. The performance declined about 15% when we omitted the utterance-level segmentation. Our experiments showed the feasibility of speech-based activity and activity-stage recognition during dynamic clinical events.
RESUMEN
Conflict monitoring and processing are crucial components of the human cognitive system, with significant implications for daily life and the diagnosis of cognitive disorders. The Stroop task, combined with brain function detection technology, has been widely employed as a classical paradigm for investigating conflict processing. However, there remains a lack of public datasets that integrate Electroencephalogram (EEG) and functional Near-infrared Spectroscopy (fNIRS) to simultaneously record brain activity during a Stroop task. We introduce a dual-modality Stroop task dataset incorporating 34-channel EEG (sampling frequency is 1000 Hz) and 20-channel high temporal resolution fNIRS (sampling frequency is 100 Hz) measurements covering the whole frontal cerebral cortex from 21 participants (9 females/12 males, aged 23.0 ± 2.3 years). Event-related potential analysis of EEG recordings and activation analysis of fNIRS recordings were performed to show the significant Stroop effect. We expected that the data provided would be utilized to investigate multimodal data processing algorithms during cognitive processing.