Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Clin Invest ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963708

RESUMEN

Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essentially meaningful. Here, we identified an under-appreciated Serine/Threonine kinase, CDKL3 (Cyclin-dependent kinase like 3), crucially drives the rapid cell cycle progression and cell growth in cancers. Mechanism-wise, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate Retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of CDK4 by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 (Cyclin-dependent kinase 4/6) inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes the acquired resistance of the latter. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presented an integrated paradigm of cancer cell cycle regulation and suggested CDKL3-targeting as a feasible approach in cancer treatment.

2.
3.
RSC Adv ; 14(28): 20199-20209, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38919279

RESUMEN

Heterogeneous solvent-metal-free aerobic oxidation of alcohols under ambient conditions is interesting but remains a significant challenge. Herein, a series of porous TEMPO-functionalized poly(ionic liquid)s (TEMPO-PILs) featuring a pure polycationic framework were successfully developed through the free radical polymerization of the ionic liquid 3-(2-chloroacetic acid-2,2,6,6-tetramethyl-1-oxo-4-piperidyl)-1-vinylimidazolium chloride and bis-vinylimidazolium bromide salt. Characterizations revealed that the obtained TEMPO-PILs possessed a high TEMPO density, abundant bromide ions, and a tunable porous structure, which enabled them to serve as solvent-free heterogeneous organocatalysts for the metal-free aerobic oxidation of benzyl alcohol under ambient conditions, exhibiting high catalytic activity and stable recyclability. A high yield of 99% coupled with a turnover frequency (TOF) of 13.3 h-1 was obtainable, which is higher than most of the reported TEMPO-based heterogeneous catalysts, even superior to homogeneous TEMPO-functionalized ionic liquids. Furthermore, a broad range of alcohols were effectively converted into their corresponding ketones and aldehydes. A possible reaction mechanism is proposed for understanding the catalytic oxidation behavior, indicative of the synergistic effect of TEMPO moieties and bromide ions.

4.
Cell ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38917788

RESUMEN

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.

5.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181741

RESUMEN

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Asunto(s)
Neoplasias Pulmonares , Proteogenómica , Carcinoma Pulmonar de Células Pequeñas , Humanos , Línea Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células Pequeñas/química , Carcinoma Pulmonar de Células Pequeñas/genética , Xenoinjertos , Biomarcadores de Tumor/análisis
6.
Cell Rep Med ; 4(12): 101302, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38052215

RESUMEN

The RATIONALE-307 study (ClinicalTrials.gov: NCT03594747) demonstrates prolonged progression-free survival (PFS) with first-line tislelizumab plus chemotherapy versus chemotherapy in advanced lung squamous cell carcinoma (LUSC; N = 360). Here we describe an immune-related gene expression signature (GES), composed of genes involved in both innate and adaptive immunity, that appears to differentiate tislelizumab plus chemotherapy PFS benefit versus chemotherapy. In contrast, a tislelizumab plus chemotherapy PFS benefit is observed regardless of programmed death ligand 1 (PD-L1) expression or tumor mutational burden (TMB). Genetic analysis reveals that NRF2 pathway activation is enriched in PD-L1positive and TMBhigh patients. NRF2 pathway activation is negatively associated with PFS, which affects efficacy outcomes associated with PD-L1 and TMB status, impairing their predictive potential. Mechanistic studies demonstrate that NRF2 directly mediates PD-L1 constitutive expression independent of adaptive PD-L1 regulation in LUSC. In summary, the GES is an immune signature that might identify LUSC patients likely to benefit from first-line tislelizumab plus chemotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Factor 2 Relacionado con NF-E2/genética , Receptor de Muerte Celular Programada 1 , Resultado del Tratamiento , Microambiente Tumoral/genética
7.
Exp Hematol Oncol ; 12(1): 77, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679762

RESUMEN

BACKGROUND: UTX (encoded by KDM6A), a histone demethylase for H3K27me2/3, is frequently mutated in human cancers. However, its functional and regulatory mechanisms in colorectal cancer (CRC) remain unclear. METHODS: Immunohistochemistry staining was used to investigate the clinical relevance of UTX in CRC. Additionally, we generated a spontaneous mouse CRC model with conditional Utx knockout to explore the role of UTX in the colorectal tumorigenesis. Post-translational regulation of UTX was determined by co-immunoprecipitation and immunoblot analyses. RESULTS: Herein, we identify that downregulation of UTX, mediated by the Cullin 4B-DNA Damage Binding Protein-1-Constitutive Photomorphogenesis Protein 1 (CUL4B-DDB1-COP1) complex, promotes CRC progression. Utx deletion in intestinal epithelial cells enhanced the susceptibility to tumorigenesis in AOM/DSS-induced spontaneous mouse CRC model. However, this effect is primarily alleviated by GSK126, an inhibitor of histone methyltransferase EZH2. Mechanistically, EMP1 and AUTS2 are identified as putative UTX target genes mediating UTX functions in limiting intestinal tumorigenesis. Notably, the CUL4B-DDB1-COP1 complex is identified as the functional E3 ligase responsible for targeting UTX for degradation in CRC cells. Thus, Cop1 deficiency in mouse intestinal tissue results in UTX accumulation and restricts tumorigenesis. Furthermore, patient cohort analysis reveals that UTX expression is negatively correlated with clinical stage, favorable disease outcomes, and COP1 expression. CONCLUSIONS: In the current study, the tumor suppressor function and regulation of UTX in CRC provide a molecular basis and the rationale to target EZH2 in UTX-deficient CRC.

8.
Cell Chem Biol ; 30(11): 1436-1452.e10, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37611590

RESUMEN

Wnt/ß-catenin signaling is a conserved pathway crucially governing development, homeostasis, and oncogenesis. Discoveries of its regulators hold great values in both basic and translational research. Through screening, we identified a deubiquitinase, USP10, as a critical modulator of ß-catenin. Mechanistically, USP10 binds to key scaffold Axin1 via conserved motifs and stabilizes Axin1 through K48-linked deubiquitination. Surprisingly, USP10 physically tethers Axin1 and ß-catenin and promotes the phase separation for ß-catenin suppression regardless of the enzymatic activity. Function-wise, USP10 enzymatic activity preferably regulates embryonic development and both the enzymatic activity and physical function jointly control intestinal homeostasis by antagonizing ß-catenin. In colorectal cancer, USP10 substantially represses cancer growth mainly through physical promotion of phase separation and correlates with Wnt/ß-catenin magnitude clinically. Collectively, we discovered USP10 functioning in multiple biological processes against ß-catenin and unearthed the enzyme-dependent and -independent "dual-regulating" mechanism. These two functions of USP10 work in parallel and are context dependent.


Asunto(s)
Vía de Señalización Wnt , beta Catenina , beta Catenina/metabolismo , Enzimas Desubicuitinizantes/metabolismo
10.
Natl Sci Rev ; 10(8): nwad167, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37575948

RESUMEN

Normal adjacent tissues (NATs) of hepatocellular carcinoma (HCC) differ from healthy liver tissues and their heterogeneity may contain biological information associated with disease occurrence and clinical outcome that has yet to be fully evaluated at the proteomic level. This study provides a detailed description of the heterogeneity of NATs and the differences between NATs and healthy livers and revealed that molecular features of tumor subgroups in HCC were partially reflected in their respective NATs. Proteomic data classified HCC NATs into two subtypes (Subtypes 1 and 2), and Subtype 2 was associated with poor prognosis and high-risk recurrence. The pathway and immune features of these two subtypes were characterized. Proteomic differences between the two NAT subtypes and healthy liver tissues were further investigated using data-independent acquisition mass spectrometry, revealing the early molecular alterations associated with the progression from healthy livers to NATs. This study provides a high-quality resource for HCC researchers and clinicians and may significantly expand the knowledge of tumor NATs to eventually benefit clinical practice.

11.
Cancer Discov ; 13(10): 2248-2269, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37486241

RESUMEN

KRAS mutations are causally linked to protumor inflammation and are identified as driving factors in tumorigenesis. Here, using multiomics data gathered from a large set of patients, we showed that KRAS mutation was associated with a specific landscape of alternative mRNA splicing that connected to myeloid inflammation in intrahepatic cholangiocarcinoma (iCCA). Then, we identified a negative feedback mechanism in which the upregulation of interleukin 1 receptor antagonist (IL1RN)-201/203 due to alternative splicing confers vital anti-inflammatory effects in KRAS-mutant iCCA. In KRAS-mutant iCCA mice, both IL1RN-201/203 upregulation and anakinra treatment ignited a significant antitumor immune response by altering neutrophil recruitment and phenotypes. Furthermore, anakinra treatment synergistically enhanced anti-PD-1 therapy to activate intratumoral GZMB+ CD8+ T cells in KRAS-mutant iCCA mice. Clinically, we found that high IL1RN-201/203 levels in patients with KRAS-mutant iCCA were significantly associated with superior response to anti-PD-1 immunotherapy. SIGNIFICANCE: This work describes a novel inflammatory checkpoint mediated by IL1RN alternative splicing variants that may serve as a promising basis to develop therapeutic options for KRAS-mutant iCCA and other cancers. This article is featured in Selected Articles from This Issue, p. 2109.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Inflamación/tratamiento farmacológico , Inflamación/genética
12.
J Environ Pathol Toxicol Oncol ; 42(4): 47-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522567

RESUMEN

Hepatocellular carcinoma (HCC) is the predominant pathological type of liver cancer. Several therapeutic treatments, including sorafenib and regorafenib, have only modestly improved survival in patients with HCC. The aim of this study was to investigate the expression profiles and the regulation of competitive endogenous RNAs (ceRNAs) of the sorafenib-related target genes in HCC. Based on clinical information and expression profiles of HCC clinical samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, shared differentially expressed genes (DEGs) were analyzed and identified. Sorafenib-associated DEGs (SADs) were obtained by intersecting the DEGs with the sorafenib target genes from SuperTarget database. The expression patterns of SADs were verified in the Oncomine database. The biological functions of the SADs were annotated by gene set enrichment analysis (GSEA). In addition, a ceRNA network associated with SADs was constructed. Long non-coding RNAs (lncRNAs) in network that were significantly associated with overall survival were identified as prognosis of patients by Cox regression analysis. Finally, the expression levels of prognostic genes in HCC tissues and cell lines were verified using qRT-PCR. Gene expression differential analysis yielded a total of 146 common DEGs were obtained, including 21 upregulated and 125 downregulated DEGs. Among them, ten SADs were detected to be differentially expressed between tumor and normal tissues, including AXL, CYP2C19, CYP2C8, CYP2C9, CYP3A4, FGFR2, GMNN, PDGFRA, and TTK. GSEA analysis grouped them into three categories by function. The first category (CYP2C19, CYP2C8, CYP2C9 and CYP3A4) and second category (GMNN, TTK and EGER2) had the opposite roles in the enriched terms and pathways, while the third class (AXL and PDGFRA) has enrichment terms and pathways that intersect with those of the first and second categories. A ceRNA network associated with SADs was also constructed including 49 lncRNAs, 14 miRNAs, and 8 mRNAs. Three of these lncRNAs, SNHG7, GAS5 and HCP5, were found upregulated in HCC tissues and to be independent predictors in HCC patients. Significant correlations were found in expression between the prognostic lncRNAs and SADs. Ten SADs were systematically identified using expression data from HCC and normal tissues from TCGA and GEO datasets. GSEA analysis provided us with insight into the function of SADs. In the future, we will continue to explore the mechanisms of coordinated regulation of SADs-related prognostic lncRNAs and SADs at the ceRNA axis level and their potential functions in the development of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sorafenib/farmacología , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Redes Reguladoras de Genes , MicroARNs/genética , Expresión Génica , Regulación Neoplásica de la Expresión Génica
13.
Sci Transl Med ; 15(706): eadg3358, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37494474

RESUMEN

Organoid models have the potential to recapitulate the biological and pharmacotypic features of parental tumors. Nevertheless, integrative pharmaco-proteogenomics analysis for drug response features and biomarker investigation for precision therapy of patients with liver cancer are still lacking. We established a patient-derived liver cancer organoid biobank (LICOB) that comprehensively represents the histological and molecular characteristics of various liver cancer types as determined by multiomics profiling, including genomic, epigenomic, transcriptomic, and proteomic analysis. Proteogenomic profiling of LICOB identified proliferative and metabolic organoid subtypes linked to patient prognosis. High-throughput drug screening revealed distinct response patterns of each subtype that were associated with specific multiomics signatures. Through integrative analyses of LICOB pharmaco-proteogenomics data, we identified the molecular features associated with drug responses and predicted potential drug combinations for personalized patient treatment. The synergistic inhibition effect of mTOR inhibitor temsirolimus and the multitargeted tyrosine kinase inhibitor lenvatinib was validated in organoids and patient-derived xenografts models. We also provide a user-friendly web portal to help serve the biomedical research community. Our study is a rich resource for investigation of liver cancer biology and pharmacological dependencies and may help enable functional precision medicine.


Asunto(s)
Neoplasias Hepáticas , Proteogenómica , Humanos , Proteómica , Medicina de Precisión , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Organoides
14.
Cell Rep ; 42(7): 112690, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37384528

RESUMEN

AKT kinase is a key regulator in cell metabolism and survival, and its activation is strictly modulated. Herein, we identify XAF1 (XIAP-associated factor) as a direct interacting protein of AKT1, which strongly binds the N-terminal region of AKT1 to block its K63-linked poly-ubiquitination and subsequent activation. Consistently, Xaf1 knockout causes AKT activation in mouse muscle and fat tissues and reduces body weight gain and insulin resistance induced by high-fat diet. Pathologically, XAF1 expression is low and anti-correlated with the phosphorylated p-T308-AKT signal in prostate cancer samples, and Xaf1 knockout stimulates the p-T308-AKT signal to accelerate spontaneous prostate tumorigenesis in mice with Pten heterozygous loss. And ectopic expression of wild-type XAF1, but not the cancer-derived P277L mutant, inhibits orthotopic tumorigenesis. We further identify Forkhead box O 1 (FOXO1) as a transcriptional regulator of XAF1, thus forming a negative feedback loop between AKT1 and XAF1. These results reveal an important intrinsic regulatory mechanism of AKT signaling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinogénesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
Autophagy ; 19(4): 1184-1198, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36037300

RESUMEN

ABBREVIATIONS: cld-CASP3: cleaved caspase 3; cld-PARP: cleaved PARP; DTP: drug tolerant persister; GO: Gene Ontology; GTEx: The Genotype-Tissue Expression; HCC: hepatocellular carcinoma; HCQ: hydroxychloroquine; IC50: half maximal inhibitory concentration value; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAPTM5: lysosomal protein transmembrane 5; NT: non-targeting; PDC: patient-derived primary cell lines; PDO: patient-derived primary organoid; TCGA: The Cancer Genome Atlas.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Autofagia , Proteínas de la Membrana/genética
17.
J Agric Food Chem ; 70(48): 15296-15310, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36441926

RESUMEN

A strategy for building ring-like deposit surface-enhanced Raman scattering (SERS) sensors with the coffee ring effect through the functional modification of the silica nanoparticle surface encapsulated by free-tagged Ag nanoparticles is addressed along with their applications in the SERS-based detection and degradation of target species, including paraquat, diquat, and their free radicals. The nanogap formed by two interparticles with SERS hotspots provides a gigantic amplification signal for the Raman scattering intensity of the analyte molecule located approximately at the hotspots. The enhanced Raman spectrum signals of these target analytes were achieved through the hotspot region of the surface plasmon resonance (SPR) located on the embankment formed by self-aggregation of SiO2@Ag nanoparticles due to the coffee ring effect. Meanwhile, the intrinsic properties of Ag nanoparticles embedded onto the silica surface were applied to photocatalytically degrade the target analytes by harvesting energy from sunlight. The SERS sensor detected the analytes down to 10-9 M in the aqueous solution.


Asunto(s)
Herbicidas , Nanopartículas del Metal , Diquat , Paraquat , Dióxido de Silicio , Plata
18.
Nat Commun ; 13(1): 7323, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443308

RESUMEN

Secreted isoform of endoplasmic reticulum membrane complex subunit 10 (scEMC10) is a poorly characterized secreted protein of largely unknown physiological function. Here we demonstrate that scEMC10 is upregulated in people with obesity and is positively associated with insulin resistance. Consistent with a causal role for scEMC10 in obesity, Emc10-/- mice are resistant to diet-induced obesity due to an increase in energy expenditure, while scEMC10 overexpression decreases energy expenditure, thus promoting obesity in mouse. Furthermore, neutralization of circulating scEMC10 using a monoclonal antibody reduces body weight and enhances insulin sensitivity in obese mice. Mechanistically, we provide evidence that scEMC10 can be transported into cells where it binds to the catalytic subunit of PKA and inhibits its stimulatory action on CREB while ablation of EMC10 promotes thermogenesis in adipocytes via activation of the PKA signalling pathway and its downstream targets. Taken together, our data identify scEMC10 as a circulating inhibitor of thermogenesis and a potential therapeutic target for obesity and its cardiometabolic complications.


Asunto(s)
Anticuerpos Neutralizantes , Resistencia a la Insulina , Humanos , Ratones , Animales , Dieta , Obesidad/genética , Obesidad/prevención & control , Transporte Biológico , Ratones Obesos , Proteínas de la Membrana
19.
J Immunother Cancer ; 10(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35863823

RESUMEN

BACKGROUND: Immune microenvironment is well recognized as a critical regulator across cancer types, despite its complex roles in different disease conditions. Intrahepatic cholangiocarcinoma (iCCA) is characterized by a tumor-reactive milieu, emphasizing a deep insight into its immunogenomic profile to provide prognostic and therapeutic implications. METHODS: We performed genomic, transcriptomic, and proteomic characterization of 255 paired iCCA and adjacent liver tissues. We validated our findings through H&E staining (n=177), multiplex immunostaining (n=188), single-cell RNA sequencing (scRNA-seq) (n=10), in vitro functional studies, and in vivo transposon-based mouse models. RESULTS: Integrated multimodule data identified three immune subgroups with distinct clinical, genetic, and molecular features, designated as IG1 (immune-suppressive, 25.1%), IG2 (immune-exclusion, 42.7%), and IG3 (immune-activated, 32.2%). IG1 was characterized by excessive infiltration of neutrophils and immature dendritic cells (DCs). The hallmark of IG2 was the relatively higher tumor-proliferative activity and tumor purity. IG3 exhibited an enrichment of adaptive immune cells, natural killer cells, and activated DCs. These immune subgroups were significantly associated with prognosis and validated in two independent cohorts. Tumors with KRAS mutations were enriched in IG1 and associated with myeloid inflammation-dominated immunosuppression. Although tumor mutation burden was relatively higher in IG2, loss of heterozygosity in human leucocyte antigen and defects in antigen presentation undermined the recognition of neoantigens, contributing to immune-exclusion behavior. Pathological analysis confirmed that tumor-infiltrating lymphocytes and tertiary lymphoid structures were both predominant in IG3. Hepatitis B virus (HBV)-related samples tended to be under-represented in IG1, and scRNA-seq analyses implied that HBV infection indeed alleviated myeloid inflammation and reinvigorated antitumor immunity. CONCLUSIONS: Our study elucidates that the immunogenomic traits of iCCA are intrinsically heterogeneous among patients, posing great challenge and opportunity for the application of personalized immunotherapy.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Virus de la Hepatitis B , Humanos , Inflamación , Ratones , Proteómica , Microambiente Tumoral
20.
Cancer Cell ; 40(1): 70-87.e15, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34971568

RESUMEN

We performed proteogenomic characterization of intrahepatic cholangiocarcinoma (iCCA) using paired tumor and adjacent liver tissues from 262 patients. Integrated proteogenomic analyses prioritized genetic aberrations and revealed hallmarks of iCCA pathogenesis. Aflatoxin signature was associated with tumor initiation, proliferation, and immune suppression. Mutation-associated signaling profiles revealed that TP53 and KRAS co-mutations may contribute to iCCA metastasis via the integrin-FAK-SRC pathway. FGFR2 fusions activated the Rho GTPase pathway and could be a potential source of neoantigens. Proteomic profiling identified four patient subgroups (S1-S4) with subgroup-specific biomarkers. These proteomic subgroups had distinct features in prognosis, genetic alterations, microenvironment dysregulation, tumor microbiota composition, and potential therapeutics. SLC16A3 and HKDC1 were further identified as potential prognostic biomarkers associated with metabolic reprogramming of iCCA cells. This study provides a valuable resource for researchers and clinicians to further identify molecular pathogenesis and therapeutic opportunities in iCCA.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/patología , Hígado/patología , Proteogenómica , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Humanos , Mutación/genética , Pronóstico , Proteogenómica/métodos , Proteómica , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...