Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38837920

RESUMEN

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.

2.
Med Biol Eng Comput ; 62(10): 3233-3247, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38816665

RESUMEN

Functional near-infrared spectroscopy (fNIRS), an optical neuroimaging technique, has been widely used in the field of brain activity recognition and brain-computer interface. Existing works have proposed deep learning-based algorithms for the fNIRS classification problem. In this paper, a novel approach based on convolutional neural network and Transformer, named CT-Net, is established to guide the deep modeling for the classification of mental arithmetic (MA) tasks. We explore the effect of data representations, and design a temporal-level combination of two raw chromophore signals to improve the data utilization and enrich the feature learning of the model. We evaluate our model on two open-access datasets and achieve the classification accuracy of 98.05% and 77.61%, respectively. Moreover, we explain our model by the gradient-weighted class activation mapping, which presents a high consistent between the contributing value of features learned by the model and the mapping of brain activity in the MA task. The results suggest the feasibility and interpretability of CT-Net for decoding MA tasks.


Asunto(s)
Redes Neurales de la Computación , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Interfaces Cerebro-Computador , Adulto , Aprendizaje Profundo , Masculino , Mapeo Encefálico/métodos , Adulto Joven , Femenino
3.
Brain Res Bull ; 206: 110826, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040298

RESUMEN

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder and early diagnosis is crucial for effective treatment. Stable and effective biomarkers are essential for understanding the underlying causes of the disorder and improving diagnostic accuracy. Electroencephalography (EEG) signals have proven to be reliable biomarkers for diagnosing ASD. Extracting stable connectivity patterns from EEG signals helps ensure robustness in ASD diagnostic systems. In this study, we propose a hybrid graph convolutional network framework called Rest-HGCN, which utilizes resting-state EEG signals to capture differential patterns of brain connectivity between normal children and ASD patients using graph learning strategies. The Rest-HGCN combines brain network analysis techniques and data-driven strategies to extract discriminative graph features from resting-state EEG signals. By automatically extracting differential graph patterns from these signals, the Rest-HGCN achieves reliable ASD diagnosis. To evaluate the performance of Rest-HGCN, we conducted ASD diagnosis experiments using k-fold cross-validation on the public ABC-CT resting EEG dataset. The proposed Rest-HGCN model achieved accuracies of 87.12 % and 85.32 % in single-subject and cross-experiment analyses, respectively. The results suggest that Rest-HGCN can effectively capture discriminant graph patterns from resting EEG signals and achieve robust ASD diagnosis. This may provide an effective and convenient tool for clinical ASD diagnosis.


Asunto(s)
Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/diagnóstico , Electroencefalografía/métodos , Encéfalo , Mapeo Encefálico , Biomarcadores
4.
J Neurosci Methods ; 397: 109936, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37524247

RESUMEN

Closed-loop auditory stimulation is one of the well-known and emerging sensory stimulation techniques, which achieves the purpose of sleep regulation by driving the EEG slow oscillation (SO, <1 Hz) through auditory stimulation. The main challenge is to accurately identify the stimulation timing and provide feedback in real-time, which has high requirements on the response time and recognition accuracy of the closed-loop auditory stimulation system. To reduce the impact of systematic errors on the regulation results, most traditional closed-loop auditory stimulation systems try to identify a single feature to determine the timing of stimulus delivery and reduce the system feedback delay by simplifying the calculation. Unlike existing closed-loop regulation systems that identify specific brain features, this paper proposes a closed-loop auditory stimulation sleep regulation system deploying machine learning. The process is: through online sleep real-time automatic staging, tracking the sleep stage to provide feedback quickly, and continuously offering external auditory stimulation at a specific SO phase. This paper uses this system to conduct sleep auditory stimulation regulation experiments on ten subjects. The experimental results show that the sleep closed-loop regulation system proposed in this paper can achieve consistency (effective for almost all subjects in the experiment) and immediate (taking effect immediately after stimulation) modulation effects on SOs. More importantly, the proposed method is superior to existing advanced methods. Therefore, the system designed in this paper has great potential to be more reliable and flexible in sleep regulation.


Asunto(s)
Electroencefalografía , Sueño , Humanos , Sueño/fisiología , Encéfalo/fisiología , Estimulación Acústica/métodos , Fases del Sueño/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-37310832

RESUMEN

Fatigued driving is a leading cause of traffic accidents, and accurately predicting driver fatigue can significantly reduce their occurrence. However, modern fatigue detection models based on neural networks often face challenges such as poor interpretability and insufficient input feature dimensions. This paper proposes a novel Spatial-Frequency-Temporal Network (SFT-Net) method for detecting driver fatigue using electroencephalogram (EEG) data. Our approach integrates EEG signals' spatial, frequency, and temporal information to improve recognition performance. We transform the differential entropy of five frequency bands of EEG signals into a 4D feature tensor to preserve these three types of information. An attention module is then used to recalibrate the spatial and frequency information of each input 4D feature tensor time slice. The output of this module is fed into a depthwise separable convolution (DSC) module, which extracts spatial and frequency features after attention fusion. Finally, long short-term memory (LSTM) is used to extract the temporal dependence of the sequence, and the final features are output through a linear layer. We validate the effectiveness of our model on the SEED-VIG dataset, and experimental results demonstrate that SFT-Net outperforms other popular models for EEG fatigue detection. Interpretability analysis supports the claim that our model has a certain level of interpretability. Our work addresses the challenge of detecting driver fatigue from EEG data and highlights the importance of integrating spatial, frequency, and temporal information. Codes are available at https://github.com/wangkejie97/SFT-Net.

6.
Comput Biol Med ; 159: 106879, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37080004

RESUMEN

Spike sorting plays an essential role to obtain electrophysiological activity of single neuron in the fields of neural signal decoding. With the development of electrode array, large numbers of spikes are recorded simultaneously, which rises the need for accurate automatic and generalization algorithms. Hence, this paper proposes a spike sorting model with convolutional neural network (CNN) and a spike classification model with combination of CNN and Long-Short Term Memory (LSTM). The recall rate of our detector could reach 94.40% in low noise level dataset. Although the recall declined with the increasing noise level, our model still presented higher feasibility and better robustness than other models. In addition, the results of our classification model presented an accuracy of greater than 99% in simulated data and an average accuracy of about 95% in experimental data, suggesting our classifier outperforms the current "WMsorting" and other deep learning models. Moreover, the performance of our whole algorithm was evaluated through simulated data and the results shows that the accuracy of spike sorting reached about 97%. It is noteworthy to say that, this proposed algorithm could be used to achieve accurate and robust automated spike detection and spike classification.


Asunto(s)
Potenciales de Acción , Aprendizaje Profundo , Memoria a Largo Plazo , Memoria a Corto Plazo , Neuronas/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-37022236

RESUMEN

Electroencephalography(EEG) signal has been recognized as an effective fatigue detection method, which can intuitively reflect the drivers' mental state. However, the research on multi-dimensional features in existing work could be much better. The instability and complexity of EEG signals will increase the difficulty of extracting data features. More importantly, most current work only treats deep learning models as classifiers. They ignored the features of different subjects learned by the model. Aiming at the above problems, this paper proposes a novel multi-dimensional feature fusion network, CSF-GTNet, based on time and space-frequency domains for fatigue detection. Specifically, it comprises Gaussian Time Domain Network (GTNet) and Pure Convolutional Spatial Frequency Domain Network (CSFNet). The experimental results show that the proposed method effectively distinguishes between alert and fatigue states. The accuracy rates are 85.16% and 81.48% on the self-made and SEED-VIG datasets, respectively, which are higher than the state-of-the-art methods. Moreover, we analyze the contribution of each brain region for fatigue detection through the brain topology map. In addition, we explore the changing trend of each frequency band and the significance between different subjects in the alert state and fatigue state through the heat map. Our research can provide new ideas in brain fatigue research and play a specific role in promoting the development of this field. The code is available on https://github.com/liio123/EEG_Fatigue.

8.
Comput Biol Chem ; 104: 107863, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37023639

RESUMEN

Driving fatigue detection based on EEG signals is a research hotspot in applying brain-computer interfaces. EEG signal is complex, unstable, and nonlinear. Most existing methods rarely analyze the data characteristics from multiple dimensions, so it takes work to analyze the data comprehensively. To analyze EEG signals more comprehensively, this paper evaluates a feature extraction strategy of EEG data based on differential entropy (DE). This method combines the characteristics of different frequency bands, extracts the frequency domain characteristics of EEG, and retains the spatial information between channels. This paper proposes a multi-feature fusion network (T-A-MFFNet) based on the time domain and attention network. The model is composed of a time domain network (TNet), channel attention network (CANet), spatial attention network (SANet), and multi-feature fusion network(MFFNet) based on a squeeze network. T-A-MFFNet aims to learn more valuable features from the input data to achieve good classification results. Specifically, the TNet network extracts high-level time series information from EEG data. CANet and SANet are used to fuse channel and spatial features. They use MFFNet to merge multi-dimensional features and realize classification. The validity of the model is verified on the SEED-VIG dataset. The experimental results show that the accuracy of the proposed method reaches 85.65 %, which is superior to the current popular model. The proposed method can learn more valuable information from EEG signals to improve the ability to identify fatigue status and promote the development of the research field of driving fatigue detection based on EEG signals.


Asunto(s)
Electroencefalografía , Electroencefalografía/métodos , Factores de Tiempo , Entropía
9.
Front Neurosci ; 17: 1143495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090812

RESUMEN

The diagnosis and management of sleep problems depend heavily on sleep staging. For autonomous sleep staging, many data-driven deep learning models have been presented by trying to construct a large-labeled auxiliary sleep dataset and test it by electroencephalograms on different subjects. These approaches suffer a significant setback cause it assumes the training and test data come from the same or similar distribution. However, this is almost impossible in scenario cross-dataset due to inherent domain shift between domains. Unsupervised domain adaption was recently created to address the domain shift issue. However, only a few customized UDA solutions for sleep staging due to two limitations in previous UDA methods. First, the domain classifier does not consider boundaries between classes. Second, they depend on a shared model to align the domain that could miss the information of domains when extracting features. Given those restrictions, we present a novel UDA approach that combines category decision boundaries and domain discriminator to align the distributions of source and target domains. Also, to keep the domain-specific features, we create an unshared attention method. In addition, we investigated effective data augmentation in cross-dataset sleep scenarios. The experimental results on three datasets validate the efficacy of our approach and show that the proposed method is superior to state-of-the-art UDA methods on accuracy and MF1-Score.

10.
Front Neurosci ; 17: 1136609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968502

RESUMEN

Driver fatigue detection is one of the essential tools to reduce accidents and improve traffic safety. Its main challenge lies in the problem of how to identify the driver's fatigue state accurately. Existing detection methods include yawning and blinking based on facial expressions and physiological signals. Still, lighting and the environment affect the detection results based on facial expressions. In contrast, the electroencephalographic (EEG) signal is a physiological signal that directly responds to the human mental state, thus reducing the impact on the detection results. This paper proposes a log-Mel spectrogram and Convolution Recurrent Neural Network (CRNN) model based on EEG to implement driver fatigue detection. This structure allows the advantages of the different networks to be exploited to overcome the disadvantages of using them individually. The process is as follows: first, the original EEG signal is subjected to a one-dimensional convolution method to achieve a Short Time Fourier Transform (STFT) and passed through a Mel filter bank to obtain a logarithmic Mel spectrogram, and then the resulting logarithmic Mel spectrogram is fed into a fatigue detection model to complete the fatigue detection task for the EEG signals. The fatigue detection model consists of a 6-layer convolutional neural network (CNN), bi-directional recurrent neural networks (Bi-RNNs), and a classifier. In the modeling phase, spectrogram features are transported to the 6-layer CNN to automatically learn high-level features, thereby extracting temporal features in the bi-directional RNN to obtain spectrogram-temporal information. Finally, the alert or fatigue state is obtained by a classifier consisting of a fully connected layer, a ReLU activation function, and a softmax function. Experiments were conducted on publicly available datasets in this study. The results show that the method can accurately distinguish between alert and fatigue states with high stability. In addition, the performance of four existing methods was compared with the results of the proposed method, all of which showed that the proposed method could achieve the best results so far.

11.
Front Neurosci ; 17: 1113593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816135

RESUMEN

Motor imagery (MI) electroencephalogram (EEG) signals have a low signal-to-noise ratio, which brings challenges in feature extraction and feature selection with high classification accuracy. In this study, we proposed an approach that combined an improved lasso with relief-f to extract the wavelet packet entropy features and the topological features of the brain function network. For signal denoising and channel filtering, raw MI EEG was filtered based on an R2 map, and then the wavelet soft threshold and one-to-one multi-class score common spatial pattern algorithms were used. Subsequently, the relative wavelet packet entropy and corresponding topological features of the brain network were extracted. After feature fusion, mutcorLasso and the relief-f method were applied for feature selection, followed by three classifiers and an ensemble classifier, respectively. The experiments were conducted on two public EEG datasets (BCI Competition III dataset IIIa and BCI Competition IV dataset IIa) to verify this proposed method. The results showed that the brain network topology features and feature selection methods can retain the information of EEG more effectively and reduce the computational complexity, and the average classification accuracy for both public datasets was above 90%; hence, this algorithms is suitable in MI-BCI and has potential applications in rehabilitation and other fields.

12.
J Neural Eng ; 19(4)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35901723

RESUMEN

Objective.Exercise-induced muscle fatigue is a complex physiological phenomenon involving the central and peripheral nervous systems, and fatigue tolerance varies across individuals. Various studies have emphasized the close relationships between muscle fatigue and the brain. However, the relationships between the resting-state electroencephalogram (rsEEG) brain network and individual muscle fatigue tolerance remain unexplored.Approach.Eighteen elite water polo athletes took part in our experiment. Five-minute before- and after-fatigue-exercise rsEEG and fatiguing task (i.e. elbow flexion and extension) electromyography (EMG) data were recorded. Based on the graph theory, we constructed the before- and after-task rsEEG coherence network and compared the network differences between them. Then, the correlation between the before-fatigue rsEEG network properties and the EMG fatigue indexes when a subject cannot keep on exercising anymore was profiled. Finally, a prediction model based on the before-fatigue rsEEG network properties was established to predict fatigue tolerance.Main results. Results of this study revealed the significant differences between the before- and after-exercise rsEEG brain network and found significant high correlations between before-exercise rsEEG network properties in the beta band and individual muscle fatigue tolerance. Finally, an efficient support vector regression (SVR) model based on the before-exercise rsEEG network properties in the beta band was constructed and achieved the accurate prediction of individual fatigue tolerance. Similar results were also revealed on another 30 subject swimmer data set further demonstrating the reliability of predicting fatigue tolerance based on the rsEEG network.Significance.Our study investigates the relationship between the rsEEG brain network and individual muscle fatigue tolerance and provides a potential objective physiological biomarker for tolerance prediction and the regulation of muscle fatigue.


Asunto(s)
Electroencefalografía , Fatiga Muscular , Encéfalo/fisiología , Electroencefalografía/métodos , Electromiografía , Humanos , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Reproducibilidad de los Resultados
13.
Front Hum Neurosci ; 16: 815163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370578

RESUMEN

The brain-computer interface (BCI) of steady-state visual evoked potential (SSVEP) is one of the fundamental ways of human-computer communication. The main challenge is that there may be a nonlinear relationship between different SSVEP in other states. For improving the performance of SSVEP BCI, a novel CNN algorithm model is proposed in this study. Based on the discrete Fourier transform to calculate the signal's power spectral density (PSD), we perform zero-padding in the signal's time domain to improve its performance on the PSD and make it more refined. In this way, the frequency point interval in the PSD of the SSVEP is consistent with the minimum gap between the stimulation frequency. Combining the nonlinear transformation capabilities of CNN in deep learning, a zero-padding frequency domain convolutional neural network (ZPFDCNN) model is proposed. Extensive experiments based on the SSVEP dataset validate the effectiveness of our method. The study verifies that the proposed ZPFDCNN method can improve the effectiveness of the SSVEP-based high-speed BCI ITR. It has massive potential in the application of BCI.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37815952

RESUMEN

In the above article [1], to track the loss of consciousness (LOC) induced by general anesthesia (GA), we first developed the multi-channel cross fuzzy entropy method to construct the time- varying networks, whose temporal fluctuations were then explored and quantitatively evaluated. Since time-varying network topologies were found to fluctuate from long-range frontal-occipital to short-range prefrontal-frontal connectivity during the LOC period, a new parameter, i.e., the long-range connectivity (LRC) that measured the number of frontal-occipital connectivity, was accordingly calculated and then investigated between the coherence (COH) and cross fuzzy entropy (C-FuzzyEn) approaches, as displayed in Fig. 1. The distinct time-varying fluctuations of both approaches were indeed found within this period, where only C-FuzzyEn effectively captured the consciousness fluctuation induced by the GA.

15.
BMC Genomics ; 22(Suppl 1): 863, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852762

RESUMEN

BACKGROUND: Recently, erdafitinib (Balversa), the first targeted therapy drug for genetic alteration, was approved to metastatic urothelial carcinoma. Cancer genomics research has been greatly encouraged. Currently, a large number of gene regulatory networks between different states have been constructed, which can reveal the difference states of genes. However, they have not been applied to the subtypes of Muscle-invasive bladder cancer (MIBC). RESULTS: In this paper, we propose a method that construct gene regulatory networks under different molecular subtypes of MIBC, and analyse the regulatory differences between different molecular subtypes. Through differential expression analysis and the differential network analysis of the top 100 differential genes in the network, we find that SERPINI1, NOTUM, FGFR1 and other genes have significant differences in expression and regulatory relationship between MIBC subtypes. CONCLUSIONS: Furthermore, pathway enrichment analysis and differential network analysis demonstrate that Neuroactive ligand-receptor interaction and Cytokine-cytokine receptor interaction are significantly enriched pathways, and the genes contained in them are significant diversity in the subtypes of bladder cancer.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Redes Reguladoras de Genes , Genómica , Humanos , Músculos , Neoplasias de la Vejiga Urinaria/genética
16.
Cogn Neurodyn ; 15(6): 939-948, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34790263

RESUMEN

To promote the rehabilitation of motor function in children with cerebral palsy (CP), we developed motor imagery (MI) based training system to assist their motor rehabilitation. Eighteen CP children, ten in short- and eight in long-term rehabilitation, participated in our study. In short-term rehabilitation, every 2 days, the MI datasets were collected; whereas the duration of two adjacency MI experiments was ten days in the long-term protocol. Meanwhile, within two adjacency experiments, CP children were requested to daily rehabilitate the motor function based on our system for 30 min. In both strategies, the promoted motor information processing was observed. In terms of the relative signal power spectra, a main effect of time was revealed, as the promoted power spectra were found for the last time of MI recording, compared to that of the first one, which first validated the effectiveness of our intervention. Moreover, as for network efficiency related to the motor information processing, compared to the first MI, the increased network properties were found for the last MI, especially in long-term rehabilitation in which CP children experienced a more obvious efficiency promotion. These findings did validate that our MI-based rehabilitation system has the potential for CP children to assist their motor rehabilitation.

17.
Artículo en Inglés | MEDLINE | ID: mdl-34705652

RESUMEN

Although the spatiotemporal complexity and network connectivity are clarified to be disrupted during the general anesthesia (GA) induced unconsciousness, it remains to be difficult to exactly monitor the fluctuation of consciousness clinically. In this study, to track the loss of consciousness (LOC) induced by GA, we first developed the multi-channel cross fuzzy entropy method to construct the time-varying networks, whose temporal fluctuations were then explored and quantitatively evaluated. Thereafter, an algorithm was further proposed to detect the time onset at which patients lost their consciousness. The results clarified during the resting state, relatively stable fuzzy fluctuations in multi-channel network architectures and properties were found; by contrast, during the LOC period, the disrupted frontal-occipital connectivity occurred at the early stage, while at the later stage, the inner-frontal connectivity was identified. When specifically exploring the early LOC stage, the uphill of the clustering coefficients and the downhill of the characteristic path length were found, which might help resolve the propofol-induced consciousness fluctuation in patients. Moreover, the developed detection algorithm was validated to have great capacity in exactly capturing the time point (in seconds) at which patients lost consciousness. The findings demonstrated that the time-varying cross-fuzzy networks help decode the GA and are of great significance for developing anesthesia depth monitoring technology clinically.


Asunto(s)
Estado de Conciencia , Propofol , Anestesia General , Encéfalo , Electroencefalografía , Entropía , Humanos , Inconsciencia
18.
Front Hum Neurosci ; 15: 692054, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483864

RESUMEN

The most important part of sleep quality assessment is the automatic classification of sleep stages. Sleep staging is helpful in the diagnosis of sleep-related diseases. This study proposes an automatic sleep staging algorithm based on the time attention mechanism. Time-frequency and non-linear features are extracted from the physiological signals of six channels and then normalized. The time attention mechanism combined with the two-way bi-directional gated recurrent unit (GRU) was used to reduce computing resources and time costs, and the conditional random field (CRF) was used to obtain information between tags. After five-fold cross-validation on the Sleep-EDF dataset, the values of accuracy, WF1, and Kappa were 0.9218, 0.9177, and 0.8751, respectively. After five-fold cross-validation on the our own dataset, the values of accuracy, WF1, and Kappa were 0.9006, 0.8991, and 0.8664, respectively, which is better than the result of the latest algorithm. In the study of sleep staging, the recognition rate of the N1 stage was low, and the imbalance has always been a problem. Therefore, this study introduces a type of balancing strategy. By adopting the proposed strategy, SEN-N1 and ACC of 0.7 and 0.86, respectively, can be achieved. The experimental results show that compared to the latest method, the proposed model can achieve significantly better performance and significantly improve the recognition rate of the N1 period. The performance comparison of different channels shows that even when the EEG channel was not used, considerable accuracy can be obtained.

19.
J Neural Eng ; 18(4): 046026, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33821808

RESUMEN

OBJECTIVE: Motor imagery (MI) classification is an important task in the brain-computer interface (BCI) field. MI data exhibit highly dynamic characteristics and are difficult to obtain. Therefore, the performance of the classification model will be challenged. Recently, convolutional neural networks (CNNs) have been employed for MI classification and have demonstrated favorable performances. However, the traditional CNN model uses an end-to-end output method, and part of the feature information is discarded during the transmission process. APPROACH: Herein, we propose a novel algorithm, that is, a combined long short-term memory generative adversarial networks (LGANs) and multi-output convolutional neural network (MoCNN) for MI classification, and an attention network for improving model performance. Specifically, the proposed method comprises three steps. First, MI data are obtained, and preprocessing is performed. Second, additional data are generated for training. Here, a data augmentation method based on a LGAN is designed. Last, the MoCNN is proposed to improve the classification performance. MAIN RESULTS: The BCI competition IV datasets 2a and 2b are employed to evaluate the performance of the proposed method. With multiple evaluation indicators, the proposed generative model can generate more realistic data. The expanded training set improves the performance of the classification model. SIGNIFICANCE: The results show that the proposed method improves the classification of MI data, which facilitates motion imagination.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Imágenes en Psicoterapia , Imaginación , Redes Neurales de la Computación
20.
Front Hum Neurosci ; 15: 635351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815080

RESUMEN

Due to the individual differences controlling brain-computer interfaces (BCIs), the applicability and accuracy of BCIs based on motor imagery (MI-BCIs) are limited. To improve the performance of BCIs, this article examined the effect of transcranial electrical stimulation (tES) on brain activity during MI. This article designed an experimental paradigm that combines tES and MI and examined the effects of tES based on the measurements of electroencephalogram (EEG) features in MI processing, including the power spectral density (PSD) and dynamic event-related desynchronization (ERD). Finally, we investigated the effect of tES on the accuracy of MI classification using linear discriminant analysis (LDA). The results showed that the ERD of the µ and ß rhythms in the left-hand MI task was enhanced after electrical stimulation with a significant effect in the tDCS group. The average classification accuracy of the transcranial alternating current stimulation (tACS) group and transcranial direct current stimulation (tDCS) group (88.19% and 89.93% respectively) were improved significantly compared to the pre-and pseudo stimulation groups. These findings indicated that tES can improve the performance and applicability of BCI and that tDCS was a potential approach in regulating brain activity and enhancing valid features during noninvasive MI-BCI processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...