Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Pestic Biochem Physiol ; 204: 106099, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277422

RESUMEN

Echinochloa crus-galli (L.) P. Beauv is a monocotyledonous weed that seriously infests rice fields. Florpyrauxifen-benzyl, a novel synthetic auxin herbicide commercialized in China in 2018, is an herbicide for controlling E. crus-galli. However, a suspected resistant population (R) collected in 2012 showed resistance to the previously unused florpyrauxifen-benzyl. Whole-plant dose-response bioassay indicated that the R population evolved high resistance to quinclorac and florpyrauxifen-benzyl. Pretreatment with P450 inhibitors did not influence the GR50 of E. crus-galli to florpyrauxifen-benzyl. The expression of target receptor EcAFB4 was down-regulated in the R population, leading to the reduced response to florpyrauxifen-benzyl (suppresses over-production of ethylene and ABA). We verified this resistance mechanism in the knockout OsAFB4 in Oryza sativa L. The Osafb4 mutants exhibited high resistance to florpyrauxifen-benzyl and moderate resistance to quinclorac. Furthermore, DNA methylation in the EcAFB4 promoter regulated its low expression in the R population after florpyrauxifen-benzyl treatment. In summary, the low expression of the auxin receptor EcAFB4 confers target resistance to the synthetic auxin herbicide florpyrauxifen-benzyl in the R- E. crus-galli.


Asunto(s)
Echinochloa , Resistencia a los Herbicidas , Herbicidas , Proteínas de Plantas , Echinochloa/efectos de los fármacos , Echinochloa/genética , Echinochloa/metabolismo , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Oryza/genética , Oryza/metabolismo , Oryza/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Quinolinas/farmacología , Malezas/efectos de los fármacos , Malezas/genética , Malezas/metabolismo
2.
Materials (Basel) ; 17(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39203243

RESUMEN

This paper investigates the tensile properties and microstructures of Cu/Al clad sheets with an SUS304 interlayer after cryorolling and subsequent annealing and compares them with hot-rolled samples. The experimental results show that the inhibition of dynamic recovery by cryorolling enables the Cu/Al clad sheets to achieve a tensile strength of 302 MPa. After annealing, the tensile strength sharply drops to 159 MPa, while the elongation recovers to 29.0%. Compared with hot-rolled samples, the tensile strength of cryorolled samples is increased by 13.1% due to the effect of fine-grain strengthening. During the annealing process, the cryorolled samples exhibit improved elongation under a comparable strength with the hot-rolled samples, profiting from the higher degree of recrystallization and a higher proportion of annealing twins. The tensile properties of Cu/Al clad sheet with an SUS304 interlayer are strengthened by cryorolling and subsequent annealing, providing a new method for the fabrication of high-performance Cu/Al clad sheets.

3.
Leuk Res ; 145: 107564, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39180903

RESUMEN

The FMS-related tyrosine kinase 3 (FLT3) inhibitor gilteritinib is standard therapy for relapsed/refractory (R/R) FLT3-mutated (FLT3mut) acute myeloid leukemia (AML) but the overall survival (OS) is only approximately 20 % and few patients achieve deep and/ or durable response. We retrospectively analyzed 29 R/R FLT3mut AML patients treated on triplet regimens (gilteritinib+ venetoclaxï¼»VEN] +azacitidineï¼»AZA]). Nineteen patients (65.5 %) had received prior FLT3 inhibitor therapy. The modified composite complete remission (mCRc) rate was 62.1 % (n = 18; CR, 4/29,13.8 %; CRi, 6/29, 20.7 %; MLFS, 8/29, 27.6 %). Among 18 patients achieved mCRc, FLT3-PCR negativity was 94.4 % (n=17), and flow-cytometry negativity was 77.7 % (n=14). The mCRc rate was 70 % (n=7) in 10 patients without prior FLT3 TKI exposure and 57.8 % (n=11) in 19 patients with prior FLT3 TKI exposure (P=0.52). At the end of the first cycle, the median time to ANC > 0.5× 109/L was 38 days and platelet > 50× 109/L was 31 days among responders, but 60-day mortality was 0 %. The estimated 2-year OS was 60.9 % for all R/R FLT3mut patients. The 1-year OS was 80 % and 58.8 % in patients without and with prior FLT3 TKI exposure, respectively (P=0.79). The estimated 2-year OS was 62 % in 19 (65.5 %) patients who received allo-HSCT after triplet therapy and 37 % in 10 patients who did not receive allo-HSCT (P=0.03). In conclusion, triplet therapy with gilteritinib, VEN, and AZA is effective and safe and an excellent frontline option for R/R FLT3mut AML.


Asunto(s)
Compuestos de Anilina , Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Mieloide Aguda , Pirazinas , Sulfonamidas , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Masculino , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/genética , Femenino , Persona de Mediana Edad , Sulfonamidas/uso terapéutico , Sulfonamidas/administración & dosificación , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Estudios Retrospectivos , Compuestos de Anilina/uso terapéutico , Adulto , Pirazinas/uso terapéutico , Pirazinas/administración & dosificación , Azacitidina/uso terapéutico , Azacitidina/administración & dosificación , Mutación , Tiofenos/uso terapéutico , Tiofenos/administración & dosificación , Resistencia a Antineoplásicos
4.
Artículo en Inglés | MEDLINE | ID: mdl-39004211

RESUMEN

OBJECTIVE: To examine the prevalence of preexisting articular bone pathology in patients with hip or knee pain due to osteoarthritis (OA) screened for fasinumab clinical trials. METHOD: This post-hoc analysis included patients with OA screened for three phase 3 fasinumab studies (NCT02683239, NCT03161093, NCT03304379). During screening, participants who met other clinical inclusion/exclusion criteria underwent radiography of knees, hips, and shoulders. Those with Kellgren-Lawrence grade (KLG) ≥ 2 for index joint and without an exclusionary finding proceeded to magnetic resonance imaging (MRI) of index, contralateral, and KLG ≥ 3 joints. Exclusionary findings included bone fragmentation/collapse, bone loss/resorption, osteonecrosis, and fracture, by either X-ray or MRI. Participants with extensive subchondral cysts were also excluded. Prevalence of abnormalities on radiographs and MRIs are reported. RESULTS: Of 27,633 participants screened, 21,997 proceeded to imaging. Of these, 1203 (5.5%) were excluded due to the presence of ≥ 1 joint with severe articular bone pathology (X-ray or MRI): bone fragmentation/collapse (2.60%), subchondral insufficiency fracture (SIF; 1.67%), osteonecrosis (1.11%), and significant bone loss (0.32%). Additionally, 3.13% screen-failed due to extensive subchondral cysts. More than half of the exclusions due to bone fragmentation/collapse (386/572), osteonecrosis (141/245) and significant bone loss (59/71), and approximately one third of SIF (133/367) and extensive subchondral cysts (229/689) were evident on X-rays. CONCLUSIONS: Approximately one in 20 participants with OA who met the clinical screening criteria for fasinumab phase 3 trials were later excluded due to preexisting severe articular bone pathology findings by X-ray or MRI.

5.
Materials (Basel) ; 17(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38591395

RESUMEN

In this study, AA1050/AA6061 laminated composites were prepared by three-cycle accumulative roll bonding (ARB) and subsequent rolling. The effects of the rolling process on the microstructure evolution and mechanical properties of AA1050/AA6061 laminated composites were systematically investigated. The results indicate that the mechanical properties of the laminated composites can be effectively improved by cryorolling compared with room-temperature rolling. The microstructure analysis reveals that cryorolling can suppress the necking of the hard layer to obtain a flat lamellar structure. Moreover, the microstructure characterized by transmission electron microscopy shows that cryorolling can inhibit the dynamic recovery and significantly refine the grain size of the constituent layers. Meanwhile, the tensile fracture surface illustrates that AA1050/AA6061 laminated composites have the optimal interfacial bonding quality after cryorolling. Therefore, the laminated composites obtain excellent mechanical properties with the contribution of these factors.

6.
J Agric Food Chem ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38600742

RESUMEN

Weed's metabolic resistance to herbicides has undermined the sustainability of herbicides and global food security. Notably, we identified an Echinochloa crus-galli (L.) P. Beauv population (R) that evolved resistance to the never-used florpyrauxifen-benzyl, in which florpyrauxifen-benzyl was metabolized faster than the susceptible E. crus-galli population (S). RNA-seq identified potential metabolism-related genes, EcCYP72A385 and EcCYP85A1, whose expression in yeast exhibited the capacity to degrade florpyrauxifen-benzyl. Region-2 in the EcCYP72A385 promoter showed significant demethylation after florpyrauxifen-benzyl treatment in the R population. DNA methyltransferase inhibitors induce EcCYP72A385 overexpression in the S population and endow it with tolerance to florpyrauxifen-benzyl. Moreover, methyltransferase-like 7A (EcMETTL7A) was overexpressed in the S population and specifically bound to the EcCYP72A385 promoter. Transgenic EcCYP72A385 in Arabidopsis and Oryza sativa L. exhibited resistance to florpyrauxifen-benzyl, whereas EcMETTL7A transgenic plants were sensitive. Overall, EcCYP72A385 is the principal functional gene for conferring resistance to florpyrauxifen-benzyl and is regulated by EcMETTL7A in E. crus-galli.

7.
Environ Toxicol ; 39(6): 3330-3340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38440903

RESUMEN

OBJECTIVE: Phthalates (PEs) could cause reproductive harm to males. A mixture of three widely used PEs (MPEs) was used to investigate the ameliorative effects of zinc (Zn) and vitamin E (VE) against male reproductive toxicity. METHODS: Fifty male SD rats were randomly divided into five groups (n = 10). Rats in MPEs group were orally treated with 160 mg/kg/d MPEs, while rats in MPEs combined Zn and/or VE groups were treated with 160 mg/kg/d MPEs plus 25 mg/kg/d Zn and/or 25 mg/kg/d VE. After intervention for 70 days, it's was measured of male reproductive organs' weight, histopathological observation of sperms and testes, serum hormones, PIWI proteins and steroidogenic proteins. RESULTS: Compared with control, anogenital distance, testes weight, epididymides weight, and sex hormones were significantly decreased, while the sperm malformation rate was markedly increased in MPEs group (p < .05); the testicular tissues were injured in MPEs group with disordered and decreased spermatids, and arrested spermatogenesis. PIWIL1, PIWIL2, StAR, CYP11A1 and CYP19A1 were down-regulated in MPEs group (p < .05). However, the alterations of these parameters were restored in MPEs combined Zn and/or VE groups (p < .05). CONCLUSION: Zn and/or VE improved steroid hormone metabolism, and inhibited MPEs' male reproductive toxicity.


Asunto(s)
Ácidos Ftálicos , Ratas Sprague-Dawley , Testículo , Vitamina E , Zinc , Animales , Masculino , Testículo/efectos de los fármacos , Testículo/patología , Vitamina E/farmacología , Ácidos Ftálicos/toxicidad , Espermatozoides/efectos de los fármacos , Ratas , Reproducción/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos
8.
Toxicol Appl Pharmacol ; 483: 116816, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218207

RESUMEN

Phthalates (PEs), such as di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) could cause reproductive and developmental toxicities, while human beings are increasingly exposed to them at low-doses. Phytochemical quercetin (Que) is a flavonoid that has estrogenic effect, anti-inflammatory and anti-oxidant effects. This study was conducted to assess the alleviative effect of Que. on male reproductive toxicity induced by the mixture of three commonly used PEs (MPEs) at low-dose in rats, and explore the underlying mechanism. Male rats were treated with MPEs (16 mg/kg/day) and/or Que. (50 mg/kg/d) for 91 days. The results showed that MPEs exposure caused male reproductive injuries, such as decreased serum sex hormones levels, abnormal testicular pathological structure, increased abnormal sperm rate and changed expressions of PIWIL1 and PIWIL2. Furthermore, MPEs also changed the expression of steroidogenic proteins in steroid hormone metabolism, including StAR, CYP11A1, CYP17A1, 17ß-HSD, CYP19A1. However, the alterations of these parameters were reversed by Que. MPEs caused male reproductive injuries in rats; Que. inhibited MPEs' male reproductive toxicity, which might relate to the improvement of testosterone biosynthesis.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Ratas , Masculino , Animales , Quercetina/farmacología , Testosterona , Ratas Sprague-Dawley , Semen/metabolismo , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/metabolismo , Testículo , Dietilhexil Ftalato/toxicidad , Proteínas Argonautas/metabolismo , Proteínas Argonautas/farmacología
9.
Ecotoxicol Environ Saf ; 270: 115920, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171105

RESUMEN

Phthalates (PEs) are widely used plasticizers in polymer products, and humans are increasingly exposed to them. This study was designed to investigate the alleviative effect of phytochemicals quercetin (Que) against male reproductive toxicity caused by the mixture of three commonly used PEs (MPEs), and further to explore the underlying mechanism. Forty-eight male SD rats were randomly and evenly divided into control group, Que group, MPEs group and MPEs+Que group (n = 12); The oral exposure doses of MPEs and Que were 450 mg/kg/d and 50 mg/kg/d, respectively. After 91 days of continuous intervention, compared with control group, the testes weight, epididymis weight, serum sex hormones, and anogenital distance were significantly decreased in MPEs group (P < 0.05); Testicular histopathological observation showed that all seminiferous tubules were atrophy, leydig cells were hyperplasia, spermatogenic cells growth were arrested in MPEs group. Ultrastructural observation of testicular germ cells showed that the edges of the nuclear membranes were indistinct, and the mitochondria were severely damaged with the cristae disrupted, decreased or even disappeared in MPEs group. Immunohistochemistry and Western blot analysis showed that testicular CYP11A1, CYP17A1 and 17ß-HSD were up-regulated, while StAR, PIWIL1 and PIWIL2 were down-regulated in MPEs group (P < 0.05); However, the alterations of these parameters were restored in MPEs+Que group. The results indicated MPEs disturbed steroid hormone metabolism, and caused male reproductive injuries; whereas, Que could inhibit MPEs' male reproductive toxicity, which might relate to the restored regulation of steroid hormone metabolism.


Asunto(s)
Ácidos Ftálicos , Quercetina , Testículo , Humanos , Ratas , Masculino , Animales , Quercetina/farmacología , Ratas Sprague-Dawley , Hormonas Esteroides Gonadales/metabolismo , Esteroides/metabolismo , Testosterona , Proteínas Argonautas/metabolismo , Proteínas Argonautas/farmacología
10.
PLoS One ; 18(11): e0293823, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38019774

RESUMEN

As is well known, the metal annealing process has the characteristics of heat concentration and rapid heating. Traditional vacuum annealing furnaces use PID control method, which has problems such as high temperature fluctuation, large overshoot, and long response time during the heating and heating process. Based on this situation, some domestic scholars have adopted fuzzy PID control algorithm in the temperature control of vacuum annealing furnaces. Due to the fact that fuzzy rules are formulated through a large amount of on-site temperature data and experience summary, there is a certain degree of subjectivity, which cannot ensure that each rule is optimal. In response to this drawback, the author combined the technical parameters of vacuum annealing furnace equipment, The fuzzy PID temperature control of the vacuum annealing furnace is optimized using genetic algorithm. Through simulation and comparative analysis, it is concluded that the design of the fuzzy PID vacuum annealing furnace temperature control system based on GA optimization is superior to fuzzy PID and traditional PID control in terms of temperature accuracy, rise time, and overshoot control. Finally, it was verified through offline experiments that the fuzzy PID temperature control system based on GA optimization meets the annealing temperature requirements of metal workpieces and can be applied to the temperature control system of vacuum annealing furnaces.


Asunto(s)
Algoritmos , Lógica Difusa , Temperatura , Vacio , Simulación por Computador
11.
J Agric Food Chem ; 71(46): 17742-17751, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37934576

RESUMEN

Echinochloa phyllopogon, a malignant weed in Northeast China's paddy fields, is currently presenting escalating resistance concerns. Our study centered on the HJHL-715 E. phyllopogon population, which showed heightened resistance to penoxsulam, through a whole-plant bioassay. Pretreatment with a P450 inhibitor malathion significantly increased penoxsulam sensitivity in resistant plants. In order to determine the resistance mechanism of the resistant population, we purified the resistant population from individual plants and isolated target-site resistance (TSR) and nontarget-site resistance (NTSR) materials. Pro-197-Thr and Trp-574-Leu mutations in acetolactate synthase (ALS) 1 and ALS2 of the resistant population drove reduced sensitivity of penoxsulam to the target-site ALS, the primary resistance mechanisms. To fully understand the NTSR mechanism, NTSR materials were investigated by using RNA-sequencing (RNA-seq) combined with a reference genome. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis further supported the enhanced penoxsulam metabolism in NTSR materials. Gene expression data and quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation confirmed 29 overexpressed genes under penoxsulam treatment, with 16 genes concurrently upregulated with quinclorac and metamifop treatment. Overall, our study confirmed coexisting TSR and NTSR mechanisms in E. phyllopogon's resistance to ALS inhibitors.


Asunto(s)
Acetolactato Sintasa , Echinochloa , Herbicidas , Echinochloa/genética , Echinochloa/metabolismo , Resistencia a los Herbicidas/genética , Espectrometría de Masas en Tándem , Herbicidas/farmacología , Herbicidas/metabolismo , Acetolactato Sintasa/genética , Acetolactato Sintasa/metabolismo
12.
Cell Death Differ ; 30(12): 2462-2476, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37845385

RESUMEN

Cyclin-dependent kinases (CDKs) regulate cell cycle progression and the transcription of a number of genes, including lipid metabolism-related genes, and aberrant lipid metabolism is involved in prostate carcinogenesis. Previous studies have shown that CDK13 expression is upregulated and fatty acid synthesis is increased in prostate cancer (PCa). However, the molecular mechanisms linking CDK13 upregulation and aberrant lipid metabolism in PCa cells remain largely unknown. Here, we showed that upregulation of CDK13 in PCa cells increases the fatty acyl chains and lipid classes, leading to lipid deposition in the cells, which is positively correlated with the expression of acetyl-CoA carboxylase (ACC1), the first rate-limiting enzyme in fatty acid synthesis. Gain- and loss-of-function studies showed that ACC1 mediates CDK13-induced lipid accumulation and PCa progression by enhancing lipid synthesis. Mechanistically, CDK13 interacts with RNA-methyltransferase NSUN5 to promote its phosphorylation at Ser327. In turn, phosphorylated NSUN5 catalyzes the m5C modification of ACC1 mRNA, and then the m5C-modified ACC1 mRNA binds to ALYREF to enhance its stability and nuclear export, thereby contributing to an increase in ACC1 expression and lipid deposition in PCa cells. Overall, our results disclose a novel function of CDK13 in regulating the ACC1 expression and identify a previously unrecognized CDK13/NSUN5/ACC1 pathway that mediates fatty acid synthesis and lipid accumulation in PCa cells, and targeting this newly identified pathway may be a novel therapeutic option for the treatment of PCa.


Asunto(s)
Acetil-CoA Carboxilasa , Neoplasias de la Próstata , Humanos , Masculino , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteína Quinasa CDC2 , Ácidos Grasos , Lípidos , Metiltransferasas , Proteínas Musculares , Próstata/metabolismo , Neoplasias de la Próstata/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Nanomaterials (Basel) ; 13(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570510

RESUMEN

It is shown that the operating temperature of pellistors for the detection of methane can be reduced to 300 °C by using Au-Pd nanoparticles on mesoporous cobalt oxide (Au-Pd@meso-Co3O4). The aim is to reduce possible catalyst poisoning that occurs during the high-temperature operation of conventional Pd-based pellistors, which are usually operated at 450 °C or higher. The individual role of Au-Pd as well as Co3O4 in terms of their catalytic activity has been investigated. Above 300 °C, Au-Pd bimetallic particles are mainly responsible for the catalytic combustion of methane. However, below 300 °C, only the Co3O4 has a catalytic effect. In contrast to methane, the sensor response and the temperature increase of the sensor under propane exposure is much larger than for methane due to the larger heat of combustion of propane. Due to its lower activation energy requirement, propane exhibits a higher propensity for oxidation compared to methane. As a result, the detection of propane can be achieved at even lower temperatures due to its enhanced reactivity.

14.
FASEB J ; 37(9): e23145, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37584654

RESUMEN

Cuproptosis, a newly discovered programmed cell death induced by copper ions, is associated with the progression and drug resistance of various tumors. Docetaxel plays a vital role as a first-line chemotherapeutic agent for advanced prostate cancer; however, most patients end up with prostate cancer progression because of inherent or acquired resistance. Herein, we examined the role of cuproptosis in the chemotherapeutic resistance of prostate cancer to docetaxel. We treated prostate cancer cell lines with elesclomol-CuCl2 , as well as with docetaxel. We performed analyses of CCK8, colony formation tests, cell cycle flow assay, transmission electron microscopy, and mTOR signaling in treated cells, and treated a xenograft prostate cancer model with elesclomol-CuCl2 and docetaxel in vivo, and performed immunohistochemistry and Western blotting analysis in treated tumors. We found that elesclomol-CuCl2 could promote cell death and enhance chemosensitivity to docetaxel. Elesclomol-CuCl2 induced cell death and inhibited the growth of prostate cancer cells relying on copper ions-induced cuproptosis, not elesclomol. In addition, dihydrolipoamide S-acetyltransferase (DLAT) was involved in cuproptosis-enhanced drug sensitivity to docetaxel. Mechanistically, upregulated DLAT by cuproptosis inhibited autophagy, promoted G2/M phase retention of cells, and enhanced the sensitivity to docetaxel chemotherapy in vitro and in vivo via the mTOR signaling pathway. Our findings demonstrated that the cuproptosis-regulated DLAT/mTOR pathway inhibited autophagy and promoted cells in G2/M phase retention, thus enhancing the chemosensitivity to docetaxel. This discovery may provide an effective therapeutic option for treating advanced prostate cancer by inhibiting the chemotherapeutic resistance to docetaxel.


Asunto(s)
Cobre , Neoplasias de la Próstata , Masculino , Humanos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/farmacología , Cobre/farmacología , Taxoides/farmacología , Taxoides/uso terapéutico , Neoplasias de la Próstata/metabolismo , Serina-Treonina Quinasas TOR , Apoptosis , Autofagia , Línea Celular Tumoral
15.
Front Pharmacol ; 14: 1123387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229259

RESUMEN

Gut microbiota affects the gut-brain axis; hence, the modulation of the microbiota has been proposed as a potential therapeutic strategy for cerebral ischemia/reperfusion injury (CIRI). However, the role and mechanism of the gut microbiota in regulating microglial polarization during CIRI remain poorly understood. Herein, using a middle cerebral artery occlusion and reperfusion (MCAO/R) rat model, we evaluated changes in the gut microbiota after CIRI and the potential effects of fecal microbiota transplant (FMT) on the brain. Rats underwent either MCAO/R or sham surgery, and then they received FMT (started 3 days later; continued for 10 days). 2,3,5-Triphenyltetrazolium chloride staining, neurological outcome scale, and Fluoro-Jade C staining showed that MCAO/R induced cerebral infarction, neurological deficits, and neuronal degeneration. In addition, immunohistochemistry or real-time PCR assay showed increased expression levels of M1-macrophage markers-TNF-α, IL-1ß, IL-6, and iNOS-in the rats following MCAO/R. Our finding suggests that microglial M1 polarization is involved in CIRI. 16 S ribosomal RNA gene sequencing data revealed an imbalance in the gut microbiota of MCAO/R animals. In contrast, FMT reversed this MCAO/R-induced imbalance in the gut microbiota and ameliorated nerve injury. In addition, FMT prevented the upregulation in the ERK and NF-κB pathways, which reversed the M2-to-M1 microglial shift 10 days after MCAO/R injury in rats. Our primary data showed that the modulation of the gut microbiota can attenuate CIRI in rats by inhibiting microglial M1 polarization through the ERK and NF-κB pathways. However, an understanding of the underlying mechanism requires further study.

16.
Materials (Basel) ; 16(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048851

RESUMEN

As a technology for micro-deformed solid-phase connection, transient liquid phase (TLP) diffusion bonding plays a key role in the manufacture of heating components of aero engines. However, the harmful brittle phase and high hardness limit the application of TLP diffusion bonding in nickel-based superalloys. In this paper, a new strategy in which a low-boron and high-titanium interlayer can restrain the brittle phase and reduce the hardness of the TLP-diffusion-bonded joint is proposed. With this strategy, the Ni3Al joint can achieve a high strength of 860.84 ± 26.9 MPa under conditions of 1250 °C, 6 h and 5 MPa. The microhardness results show that the average microhardness of the joint area is 420.33 ± 3.15 HV and is only 4.3% higher than that of the Ni3Al base material, which proves that this strategy can effectively inhibit the formation of the harmful brittle phase in the joint area. The results of EBSD show that 7.7% of the twin boundaries exist in the isothermal solidification zone, and only small amounts of secondary precipitates are observed at the grain boundaries in the joint, which indicates that twin boundaries may play a dominant role in crack initiation. This study provides a feasible avenue to suppress the brittle phase in TLP-diffusion-bonded joints.

17.
Am J Transl Res ; 15(2): 779-798, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915769

RESUMEN

OBJECTIVE: Prostate adenocarcinoma (PRAD) is one of the most common cancers, with high morbidity and mortality. Triggering receptors expressed on myeloid cells 2 (TREM2) is upregulated in various malignancies, however its effect on PRAD remains unknown. This study aimed to investigate the prognostic value of TREM2 in PRAD. METHODS: PRAD samples were collected from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), Oncomine, and the Human Protein Atlas (HPA) to analyze the differences in TREM2 expression between normal and tumor tissues. The influence of TREM2 on the clinicopathological characteristics and its prognostic value were evaluated using the Kaplan-Meier curve, Cox regression analysis, ROC (receiver operating characteristic) plot, and nomogram. Gene Ontology (GO), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) were conducted to screen biological functions and pathways. The relationship between TREM2 and tumor microenvironment (TME) characteristics was explored. The TREM2 expression in PRAD specimens and cell lines was assessed by immunohistochemistry staining and western blot. TREM2-specific siRNAs were used to evaluate the effects of TREM2 on cell function. RESULTS: TREM2 was upregulated and positively associated with poor clinicopathologic characteristics. Overexpression of TREM2 is an independent biomarker for the prognosis of PFI (progression-free interval). Moreover, TREM2 expression was positively correlated with various TME characteristics. Knockdown of TREM2 inhibited the migration of PRAD cell lines via the PI3K/AKT axis. CONCLUSION: High TREM2 expression may represent a novel diagnostic and prognostic biomarker and serve as a potential target gene for PRAD therapy.

18.
Ann Hematol ; 102(4): 937-946, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36763109

RESUMEN

Acute myeloid leukemia (AML) patients can benefit from allogeneic hematopoietic cell transplantation (alloHCT) and achieve long-term remission. Recovery of T cell quantity and quality is critical to reduce the incidences of life-threatening complications after alloHCT. Although the general recovery level of γδ T cells is recognized to be associated with outcomes of patients who suffered from various hematological diseases and received alloHCT, the correlation between γδ T cell subsets and the prognosis in AML patients following transplantation remains to be investigated. In the current study, the recoveries of T cell subpopulations in 103 AML patients were dissected at different time points after haploidentical HCT (haploHCT). Statistical analyses showed that the absolute number of Vδ2+ T cells on day 90 was an independent risk factor for predicting 2-year OS in AML patients following haploHCT. The survival advantage from the improved recovery of day-90 Vδ2+ T cells was attributed to reducing the infection-related mortality. Consistently, lower 2-year non-relapse mortality was found in recipients with higher day-90 levels of Vδ2+ T cells. Notably, day-270 Vδ2+ T cell numbers reversely correlated to both 2-year and 5-year probabilities of relapse in this scenario. These results highlighted the significant correlation of Vδ2+ T cells recovery with long-term survival and relapse after alloHCT, suggesting that Vδ2+ T cells-based immune strategies may help control infectious complications and leukemia recurrence in AML patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Trasplante Homólogo , Incidencia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Recurrencia , Enfermedad Crónica
19.
Cell Death Dis ; 14(1): 26, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639679

RESUMEN

Splicing factor 3B subunit 4 (SF3B4) plays important functional roles not only in pre-mRNA splicing, but also in the regulation of transcription, translation, and cell signaling, and its dysregulation contributes to various diseases including Nager syndrome and tumorigenesis. However, the role of SF3B4 and underlying mechanisms in clear cell renal cell carcinoma (ccRCC) remain obscure. In the present study, we found that the expression of SF3B4 was significantly elevated in ccRCC tissues and negatively correlated with the overall survival of ccRCC patients. Upregulation of SF3B4 promotes migration and invasion of ccRCC cells in vitro and in vivo. The promoting effect of SF3B4 on cell migration and invasion is mediated by Twist1, a key transcription factor to mediate EMT. Interestingly, SF3B4, a component of the pre-mRNA spliceosome, is able to promote KLF16 expression by facilitating the transport of KLF16 mRNA into the cytoplasm. Mechanistically, SF3B4 promotes the export of KLF16 mRNA from the nucleus to the cytoplasm and thus enhances KLF16 expression, and in turn elevated KLF16 directly binds to the Twist1 promoter to activate its transcription, leading to EMT and ccRCC progression. Our findings provide evidence that the SF3B4-KLF16-Twist1 axis plays important functional roles in the development and progression of ccRCC, and manipulating this pathway may be a novel therapeutic target for the treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Precursores del ARN/metabolismo , ARN Mensajero/genética , Citoplasma/metabolismo , Línea Celular Tumoral , Neoplasias Renales/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
20.
Ultrason Sonochem ; 92: 106244, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36508893

RESUMEN

In this investigation, ultrasonic-assisted soldering at 260 °C in air produced high strength and high melting point Cu connections in 60 s using Ni foam reinforced Sn composite solder. Systematically examined were the microstructure, grain morphology, and shear strength of connections made with various porosities of Ni foam composite solders. Results shown that Ni foams as strengthening phases could reinforce Sn solder effectively. The addition of Ni foam accelerated the metallurgical reaction due to great amount of liquid/solid interfaces, and refined the intermetallic compounds (IMCs) grains by ultrasonic cavitation. The joints had different IMCs by using Ni foam with different porosity. Layered (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 phases both existed in Cu/Ni60-Sn/Cu joint while only (Cu,Ni)6Sn5 IMCs grew in Cu/Ni98-Sn/Cu joint. As ultrasonic time increasing, Ni skeletons were dissolved and the IMCs were peeled off from substrates and broken into small particles. And then, the IMCs gradually dissociated into refined particles and distributed homogeneously in the whole soldering seam under cavitation effects. Herein, the Cu/Ni60-Sn/Cu joint ultrasonically soldered for 60 s exhibited the highest shear strength of 86.9 MPa, as well as a high melting point about 800 â„ƒ for the solder seam composed of Ni skeletons and Ni-Cu-Sn IMCs. The characterization indicated that the shearing failure mainly occurred in the interlayer of the soldering seam. The homogeneous distributed granular IMCs and Ni skeletons hindered the crack propagation and improved the strength of Cu alloy joints.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...