Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Spinal Cord Med ; : 1-14, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647358

RESUMEN

BACKGROUND: Oxidative stress is a crucial factor contributing to the occurrence and development of secondary damage in spinal cord injuries (SCI), ultimately impacting the recovery process. α-lipoic acid (ALA) exhibits potent antioxidant properties, effectively reducing secondary damage and providing neuroprotective benefits. However, the precise mechanism by which ALA plays its antioxidant role remains unknown. METHODS: We established a model of moderate spinal cord contusion in rats. Experimental rats were randomly divided into 3 distinct groups: the sham group, the model control group (SCI_Veh), and the ALA treatment group (SCI_ALA). The sham group rats were exposed only to the SC without contusion injury. Rats belonging to SCI_Veh group were not administered any treatment after SCI. Rats of SCI_ALA group were intraperitoneally injected with the corresponding volume of ALA according to body weight for three consecutive days after the surgery. Subsequently, three days after SCI, spinal cord samples were obtained from three groups of rats: the sham group, model control group, and administration group. Thereafter, total RNA was extracted from the samples and the expression of three sets of differential genes was analyzed by transcriptome sequencing technology. Real-time PCR was used to verify the sequencing results. The impact of ALA on oxidative stress in rats following SCI was assessed by measuring their total antioxidant capacity and hydrogen peroxide (H2O2) content. The effects of ALA on rat recovery following SCI was investigated through Beattie and Bresnahan (BBB) score and footprint analysis. RESULTS: The findings from the transcriptome sequencing analysis revealed that the model control group had 2975 genes with altered expression levels when compared to the ALA treatment group. Among these genes, 1583 were found to be upregulated while 1392 were down-regulated. Gene ontology (GO) displayed significant enrichment in terms of functionality, specifically in oxidative phosphorylation, oxidoreductase activity, and signaling receptor activity. The Kyoto encyclopedia of genes and genomes (KEGG) pathway was enriched in oxidative phosphorylation, glutathione metabolism and cell cycle. ALA was found to have multiple benefits for rats after SCI, including increasing their antioxidant capacity and reducing H2O2 levels. Additionally, it was effective in improving motor function (such as 7 days after SCI, the BBB score for SCI_ALA was 8.400 ± 0.937 compared to 7.050 ± 1.141 for SCI_Veh) and promoting histological recovery after SCI (The results of HE demonstrated that the percentage of damage area in was 44.002 ± 6.680 in the SCI_ALA and 57.215 ± 3.964 in the SCI_Veh at the center of injury.). The sequence data from this study has been deposited into Sequence Read Archive (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242507). CONCLUSION: Overall, the findings of this study confirmed the beneficial effects of ALA on recovery in SCI rats through transcriptome sequencing, behavioral, as well histology analyses.

2.
Exp Neurol ; 377: 114784, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38642665

RESUMEN

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1ß, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.

3.
Chem Biodivers ; 18(7): e2100342, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34148286

RESUMEN

Paris polyphylla Smith var. yunnanensis (Franch.) Hand. - Mazz. is a precious traditional Chinese medicine, and steroidal saponins are its major bioactive constituents possessing extensive biological activities. Squalene synthase (SQS) catalyzes the first dedicated step converting two molecular of farnesyl diphosphate (FDP) into squalene, a key intermediate in the biosynthetic pathway of steroidal saponins. In this study, a squalene synthase gene (PpSQS1) was cloned and functionally characterized from P. polyphylla var. yunnanensis, representing the first identified SQS from the genus Paris. The open reading frame of PpSQS1 is 1239 bp, which encodes a protein of 412 amino acids showing high similarity to those of other plant SQSs. Expression of PpSQS1 in Escherichia coli resulted in production of soluble recombinant proteins. Gas chromatography-mass spectrometry analysis showed that the purified recombinant PpSQS1 protein could produce squalene using FDP as a substrate in the in vitro enzymatic assay. qRT-PCR analysis indicated that PpSQS1 was highly expressed in rhizomes, consistent with the dominant accumulation of steroidal saponins there, suggesting that PpSQS1 is likely involved in the biosynthesis of steroidal saponins in the plant. The findings lay a foundation for further investigation on the biosynthesis and regulation of steroidal saponins, and also provide an alternative gene for manipulation of steroid production using synthetic biology.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/metabolismo , Melanthiaceae/enzimología , Clonación Molecular , Farnesil Difosfato Farnesil Transferasa/genética , Medicina Tradicional China , Alineación de Secuencia , Análisis de Secuencia de Proteína
4.
Org Lett ; 23(6): 2232-2237, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33667109

RESUMEN

Eurysoloids A (1) and B (2), two novel diastereomeric sesterterpenoids possessing a pentacyclic 5/6/5/10/5 framework with an unusual macrocyclic ether system, were isolated from Eurysolen gracilis Prain. Their structures were unambiguously determined by spectroscopic, single-crystal X-ray diffraction and DP4+ analyses. A plausible biosynthetic pathway for compounds 1 and 2 was proposed. Both compounds exhibited immunosuppressive activity via inhibiting the production of cytokine IFN-γ of T cells, and compound 2 inhibited adipogenesis in 3T3-L1 adipocytes.


Asunto(s)
Adipocitos/química , Adipogénesis/efectos de los fármacos , Éter/metabolismo , Lamiaceae/química , Sesterterpenos/farmacología , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Éter/química , Ratones , Estructura Molecular , Sesterterpenos/química , Sesterterpenos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA