Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 343: 123288, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176640

RESUMEN

Microplastic pollution has been frequently reported in natural water environments, but studies on the occurrence and characteristics of microplastic in aquaculture environments especially in pond production system are relatively scarce. Herein, we investigated the abundance and characteristics of microplastic pollution in aquaculture ponds that farm different species (fish, prawn and crab) near the Yangtze Estuary, China. The average abundance of microplastic in pond water and sediment was 36.25 ± 6.79 items/L and 271.65 ± 164.83 items/kg, respectively. Compared to fish ponds (208.43 ± 57.82 items/kg), microplastic abundance was significantly higher in sediment of crab and prawn ponds (312.02 ± 38.76 and 248.87 ± 36.51 items/kg respectively). Across all ponds, transparent, white and black microplastic were the common colors. Fiber was the most common type, accounting for 40.9% and 58.6% in pond water and sediment, respectively. The size of microplastic was mainly distributed between 300 and 1000 µm. For microplastic polymer composition, polyethylene (PE) was predominant in pond water, accounting for 55%, followed by polyamide with 15%. The predominant polymer in sediment was PE with 34%, followed by polypropylene with 18%. As for the ecological risk assessment of microplastic, the pollution load index was 7.6 (risk level I) and 8.9 (risk level I) for pond water and sediment, respectively. The polymer hazard index was 85.3 (risk level II) and 12.1 (risk level II) for pond water and sediment, respectively. Taken together, the pollution risk index was rated as high and very high for pond sediment and water, respectively. These results provide a basis for the comprehensive evaluation and developing practical approaches to deal with microplastic in aquaculture pond, which is of great significance to the healthy development of pond aquaculture.


Asunto(s)
Braquiuros , Contaminantes Químicos del Agua , Animales , Estanques , Microplásticos , Plásticos , Monitoreo del Ambiente , Estuarios , Contaminantes Químicos del Agua/análisis , Agua , Peces , Acuicultura , China , Sedimentos Geológicos
2.
Fish Shellfish Immunol ; 144: 109291, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104702

RESUMEN

Discus fish (Symphysodon aequifasciatus) exhibit a unique parental care behavior: adult discus produces secretion through their skin, on which the larvae live after birth. The immune components in the skin mucus of parental discus would change during different parental care. C-type lectins (CTLs) could identify and eliminate pathogenic microorganisms and play important roles in innate immunity. Studies on CTLs of discus fish especially during parental care, however, are scarce. Here, we identified 186 CTL genes that distributed in 27 linkage groups based on discus genome. Phylogenetic analysis showed that S. aequifasciatus CTL (SaCTL) members were grouped into 14 subfamilies. A total of 80 gene replication events occurred, of which 15 pairs were subjected to segmental duplication and 65 pairs underwent tandem duplication. Ka/Ks ranged from 0.11 (SaCTL25/SaCTL158) to 0.68 (SaCTL36/SaCTL69), all undergoing purifying selection. RNA-seq analysis revealed that SaCTL members, including duplicated genes, in the skin of parental discus show distinct expression patterns in different care stages and between male and female parents. The SaCTL11 was differentially expressed in most care stages and reached the maximum after eggs spawned, but the expression of its paired SaCTL14 was low in each stage. The SaCTL39 increased first and then decreased, reaching a peak in eggs spawned, while paired SaCTL48 first decreased and then increased, reaching a peak in hatched eggs. The SaCTL50 was differentially expressed only in female fish during care, but not in male fish. These results provide new insights into the evolution and potential functional differentiation of CTLs in discus fish during parental care.


Asunto(s)
Cíclidos , Lectinas Tipo C , Femenino , Masculino , Animales , Filogenia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Cíclidos/genética , Piel/metabolismo , Larva
3.
J Hazard Mater ; 465: 133290, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38134685

RESUMEN

Microplastics (MPs) could provide vector for microorganisms to form biofilm (plastisphere), but the shaping process of MPs biofilm and its effects on the structure and function of sedimentary microbial communities especially in aquaculture environments are not reported. For this, we incubated MPs biofilm in situ in an aquaculture pond and established a sediment microcosm with plastisphere. We found that the formation of MPs biofilm in surface water was basically stable after 30 d incubation, but the biofilm communities were reshaped after deposition for another 30 d, because they were more similar to plastisphere communities incubated directly within sediment but not surface water. Moreover, microbial communities of MPs-contaminated sediment were altered, which was mainly driven by the biofilm communities present on MPs, because they but not sediment communities in proximity to MPs had a more pronounced separation from the control sediment communities. In the presence of MPs, increased sediment nitrification, denitrification and N2O production rates were observed. The K00371 (NO2-⇋NO3-) pathway and elevated abundance of nxrB and narH genes were screened by metagenomic analysis. Based on structural equation model, two key bacteria (Alphaproteobacteria bacterium and Rhodobacteraceae bacterium) associated with N2O production were further identified. Overall, the settling of MPs could reshape the original biofilm and promote N2O production by selectively elevating sedimental microorganisms and functional genes in aquaculture pond.


Asunto(s)
Microbiota , Estanques , Plásticos/metabolismo , Óxido Nitroso/metabolismo , Bacterias/metabolismo , Microplásticos/metabolismo , Acuicultura , Agua
4.
Sci Total Environ ; 874: 162494, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36863590

RESUMEN

Microplastics (MPs) exposure generally triggers oxidative stress in fish species and vertebrate pigmentation is commonly influenced by oxidative stress, but MPs-induced oxidative stress on fish pigmentation and body color phenotype has not been reported. The aim of this study is to determine whether astaxanthin could mitigate the oxidative stress caused by MPs but at the expense of reduced skin pigmentation in fish. Here, we induced oxidative stress in discus fish (red skin color) by 40 or 400 items/L MPs under both astaxanthin (ASX) deprivation and supplementation. We found that lightness (L*) and redness (a*) values of fish skin were significantly inhibited by MPs under ASX deprivation. Moreover, MPs exposure significantly reduced ASX deposition in fish skin. The total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity in fish liver and skin were both significantly increased with the increase of MPs concentration, but content of glutathione (GSH) in fish skin showed a significant decrease. For ASX supplementation, the L*, a* values and ASX deposition were significantly improved by ASX, including the skin of MPs-exposed fish. The T-AOC and SOD levels changed non-significantly in fish liver and skin under the interaction of MPs and ASX, but ASX significantly reduced GSH content in fish liver. Biomarker response index indicated that ASX could improve the moderately altered antioxidant defense status of MPs-exposed fish. This study suggests that the oxidative stress caused by MPs was mitigated by ASX but at expense of reduced fish skin pigmentation.


Asunto(s)
Antioxidantes , Microplásticos , Animales , Antioxidantes/metabolismo , Pigmentación de la Piel , Plásticos , Estrés Oxidativo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo
5.
Gene ; 862: 147260, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36775217

RESUMEN

Discus Symphysodon spp. employs an unusual parental care behavior where fry feed on parental skin mucus after hatching. Studies on discus immunoglobulin superfamily (IgSF) especially during parental care are scarce. Here, a total of 518 IgSF members were identified based on discus genome and clustered into 12 groups, unevenly distributing on 30 linkage groups. A total of 92 pairs of tandem duplication and 40 pairs of segmental duplication that underwent purifying selection were identified. IgSF genes expressed differentially in discus skin during different care stages and between male and female parents. Specifically, the transcription of btn1a1, similar with mammalian lactation, increased after spawning, reached a peak when fry started biting on parents' skin mucus, and then decreased. The expression of btn2a1 and other immune members, e.g., nect4, fcl5 and cd22, were up-regulated when fry stopped biting on mucus. These results suggest the expression differentiation of IgSF genes in skin of discus fish during parental care.


Asunto(s)
Cíclidos , Piel , Animales , Femenino , Masculino , Piel/metabolismo , Cíclidos/genética , Vertebrados , Inmunoglobulinas/metabolismo , Lactancia , Mamíferos
6.
Sci Total Environ ; 866: 161362, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36610618

RESUMEN

Biofloc technology, extensively used in intensive aquaculture systems, can prompt the formation of microbial aggregates. Microplastics (MPs) are detected abundantly in aquaculture waters. This study explored the effects of MPs on biofloc formation, microbial community composition and nitrogen transformation function in simulated biofloc aquaculture production systems. The formation process and settling performance of bioflocs were examined. High-throughput sequencing of 16S and 18S rRNA genes was used to investigate the microbial community compositions of bioflocs. Nitrogen dynamics were monitored and further explained from functional genes and microorganisms related to nitrogen transformation by metagenome sequencing. We found that the aggregates consisting of bioflocs and MPs were formed and the systems with MPs had relatively weak settling performance. No significant differences in bacterial diversity (p > 0.05) but significant differences in eukaryotic diversity (p < 0.05) were found between systems without and with MPs. Significant separations in the microbial communities of prokaryotes (p = 0.01) and eukaryotes (p = 0.01) between systems without and with MPs were observed. The peak concentration of nitrite nitrogen (NO2--N) in systems with MPs was lower than that in systems without MPs (pControl/MPs Low = 0.02 and pControl/MPs High = 0.03), probably due to the low abundance of hao and affiliated Alphaproteobacteria_bacterium_HGW-Alphaproteobacteria-1 and Alphaproteobacteria_bacterium, but the high abundance of nxrA and affiliated Alphaproteobacteria_bacterium_SYSU_XM001 and Hydrogenophaga_pseudoflava that related to nitrification. The low concentration of NO2--N in systems with MPs suggested that the presence of MPs might inhibit ammonia oxidation but promote nitrite oxidation by altering the microbial community structure and function. These results indicated that aggregates consisting of bioflocs and MPs could be formed in aquaculture water, and thus, inhibiting their settlement and altering nitrogen transformation function by affecting the microbial community composition.


Asunto(s)
Microbiota , Microplásticos , Plásticos , Nitrógeno , Dióxido de Nitrógeno , Acuicultura/métodos
7.
Bull Environ Contam Toxicol ; 110(1): 1, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484820

RESUMEN

Microplastics (MPs) pollution has been extensively investigated in natural fishery waters, but studies on intensive aquaculture systems are scarce. Here, the occurrence and properties of MPs were investigated and compared between four different aquaculture systems nearby the Yangtze Estuary. The average MPs concentration was in order of recirculating aquaculture system (RAS, 1.67 particles/L) < aquarium (2.47 particles/L) < cement pond (10.09 particles/L) < earthen pond (13.81 particles/L). Compared to fragment MPs, fiber was the more abundant shape in aquarium (85.88%), RAS (77.61%) and earthen pond (68.13%). A total of six colors were found in four systems. The black MPs accounted for 56.86% and 47.45% in aquarium and RAS system, respectively. The high proportion of blue MPs was found in cement pond (37.65%) and earthen pond (40%). The most MPs sizes observed in the four systems were 43% of 50-300 µm MPs in aquarium; 44% and 30.19% of 300-1000 µm MPs in RAS and cement pond, respectively; and 30.19% of 3000-5000 µm MPs in earthen pond. For polymers, polypropylene occupied 47.83% in aquarium and RAS, 41.46% in cement pond and 27.79% in earthen pond. Proportion of rayon was highest in RAS (60.87%) and 34.04% of nylon was found in earthen pond. These results could provide scientific reference for further traceability and removal of MPs in different aquaculture systems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Estuarios , Acuicultura , China
8.
Chemosphere ; 309(Pt 1): 136646, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183890

RESUMEN

The plastisphere refers to biofilm formation on the microplastic (MP) surface, but its subsequent functions, especially driving the nitrogen biogeochemical cycle, are rarely studied. Here, MPs were incubated in the pelagic water and benthic water-sediment interface of an aquaculture pond, and the two corresponding microcosms amended with incubated plastisphere were simulated. The results showed decreased ammonia concentrations and increased nitrification rates in microcosms with either pelagic or benthic plastispheres. To uncover the possible mechanisms, the community structure and function of the plastisphere were investigated. As clarified by 16S rRNA, the community diversity of the pelagic plastisphere was significantly higher than that of the corresponding hydrosphere. Plastisphere communities, especially those incubated in pelagic water, were separated from the hydrosphere. Moreover, the abundance of Proteobacteria increased while the abundance of Cyanobacteria decreased in both plastispheres. Metagenome further revealed that the abundance of amoA and annotated Nitrososphaeraceae_archaeon and hao and affiliated Nitrosomonas_europaea, which contributed to ammonia oxidation to nitrite, was higher in the benthic plastisphere. Comparing the pelagic plastisphere with the corresponding hydrosphere, however, the abundance of nxrA and annotated Nitrobacter hamburgensis and nxrB and the affiliated Nitrospira moscoviensis, which are involved in nitrite oxidation, was more abundant in the plastisphere. These findings suggest that the plastisphere might selectively enrich functional microorganisms and genes in a habitat-dependent manner to promote nitrification in aquaculture ponds.


Asunto(s)
Nitrificación , Plásticos , ARN Ribosómico 16S/genética , Amoníaco , Microplásticos , Nitritos , Estanques , Filogenia , Acuicultura , Nitrógeno , Agua , Oxidación-Reducción
9.
J Appl Microbiol ; 133(2): 960-971, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543337

RESUMEN

AIMS: To investigate the gut microbiota communities of reciprocal hybrids and inbred lines of koi (Cyprinus carpio) and goldfish (Carassius auratus), as well as the genetic effect of intestinal microbiota between hybrids and parents. METHODS AND RESULTS: The reciprocal hybrids and inbred lines derived from the parents, koi and goldfish, were established. Then, the bacterial 16S rRNA gene of intestinal contents was sequenced using Illumina Miseq PE300. Alpha diversity in the two types of hybrids was lower than inbred lines of koi or goldfish and was highest in goldfish, followed by koi. For beta diversity, microbial samples presented clear clusters and the two types of hybrids were more similar to koi than goldfish, indicating the gut microbiota of the reciprocal hybrids was more affected by koi. The dominant phyla were Proteobacteria, Actinobacteria and Firmicutes in koi, and Proteobacteria, Fusobacteria and Actinobacteria in goldfish, and Proteobacteria, Fusobacteria and Firmicutes in the reciprocal hybrids. In the case of Proteobacteria, the dominant classes were Alphaproteobacteria and Gammaproteobacteria in four fish. The dominant genera were norank_f_Rhizobiales_Incertae_Sedis and Plesiomonas in koi, Cetobacterium in goldfish, and Cetobacterium and ZOR0006 in the reciprocal hybrids. PICRUSt1 predictive function analysis showed that the reciprocal hybrids had lower abundance in the most functional categories than koi and goldfish. CONCLUSIONS: The gut microbiota of reciprocal hybrids was more affected by koi. Two types of hybrids possessed the same dominated phyla and were different from the inbred lines of koi and goldfish. SIGNIFICANCE AND IMPACT OF THE STUDY: It enhanced our understanding of gut microbiota of hybrid lines of goldfish and koi and provided a new perspective for the selective breeding of gut microbiota traits.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Animales , Bacterias/genética , Microbioma Gastrointestinal/genética , Carpa Dorada/genética , Carpa Dorada/microbiología , Proteobacteria/genética , ARN Ribosómico 16S/genética
10.
J Hazard Mater ; 421: 126830, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34396975

RESUMEN

Numerous studies have investigated neurobehavioral toxicity of microplastics, but no studies have illustrated mechanism via brain-gut axis. Here, juvenile discus fish (Symphysodon aequifasciatus) were exposed for 96 h to microfibers (900 µm, fiber, MFs) or nanoplastics (~88 nm, bead, NPs) with three concentrations (0, 20 and 200 µg/L). Accumulation in fish gut was independent of plastics type and concentration. MFs reduced growth performance while NPs weakened swimming and predatory performance of post-exposed discus. For brain cholinesterase activity, acetylcholinesterase was activated by NPs while NPs/MFs exposure inhibited butyrylcholinesterase. Concentrations of neurotransmitters (acetylcholine, dopamine and γ-aminobutyric acid) increased in brain but decreased in gut after NPs or MFs exposure. For gut microbiota, increased richness under MFs exposure was observed. At phylum level, Proteobacteria proportion was lower in NPs but higher in MFs. Abundance of Clostridia and Fusobacteriia (Bacillus), potentially secreting neurotransmitters, increased in NPs but decreased in MFs. Brain transcriptomics revealed seven upregulated and four downregulated genes concerning neural-activities. Pathways of neuroactive ligand-receptor interaction and serotonergic synapse were enriched in both MFs and NPs, but dopaminergic synapse pathway was enriched only in MFs. These results established a novel mechanism by which microplastics might cause behavioral toxicities via brain-gut-microbiota axis.


Asunto(s)
Microbioma Gastrointestinal , Plásticos , Acetilcolinesterasa , Animales , Encéfalo , Butirilcolinesterasa , Microplásticos
11.
J Hazard Mater ; 424(Pt D): 127751, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34799162

RESUMEN

As detriments in aquatic environments, microplastics (MPs) have been commonly studied on organisms, but tissue-scale effects of MPs were poorly understood. Discus fish (Symphysodon aequifasciatus), herewith, were exposed to polystyrene MPs (0/20/200 µg/L) for 28 d. We found that MPs significantly inhibited growth performance. MPs were observed in skin, gill and intestine after 14/28-d exposure. MPs bioaccumulation was independent of exposure time, but increased with MPs concentrations. Microbial community diversity of fish gill, but not skin and intestine, in MPs treatments was significantly increased. Bacterial community of MP-treated skin and gill were obviously separated from control. Skin dominant phyla changed from Actinobacteriota to Proteobacteria and Firmicutes. Proteobacteria gradually occupied dominance in gill after exposure. Furthermore, MPs-induced skin oxidative stress was demonstrated by the activation of superoxide dismutase and catalase. Skin malondialdehyde also increased and showed significant correlations with four bacterial phyla, e.g., Proteobacteria. Gill Na+/K+-ATPase activity decreased, strongly correlating to microbial community changes caused by MPs. Intestinal digestive enzymes activity (pepsin, lipase and α-amylase) reduced, revealing correlation with bacterial community especially Fibrobacterota. These results suggest a tissue-specific effect of MPs to microbial community and biomarkers in aquatic organism.


Asunto(s)
Cíclidos , Microbiota , Contaminantes Químicos del Agua , Animales , Biomarcadores , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
12.
Artículo en Inglés | MEDLINE | ID: mdl-34864613

RESUMEN

Oscar Astronotus ocellatus is an important ornamental fish, including albino and wild varieties. Albino individuals attract aquarium hobbyists due to their unique body color, but studies on the species' albinism mechanism are currently scarce. Here, we investigated the morphological and transcriptomic profiles of the skin of albino and wild Oscar. The results showed that the albino type had fewer oval-shaped melanophores and immature melanosomes but that the wild type contained more stellate-shaped melanophores and mature melanosomes. Albino Oscar had a degenerative pigment layer without obvious melanin deposition and content, while the wild type contained more concentrated melanin within the pigment layer. A total of 272,392 unigenes were detected, 109 of which were identified as differentially expressed genes (DEGs) between albino and wild Oscar. Pathways of DEGs, including those involved in complement and coagulation cascades, novobiocin biosynthesis, Th1 and Th2 cell differentiation, and tropane, piperidine and pyridine alkaloid biosynthesis, were significantly enriched. DEGs, including upregulated Sfrp5 and Tat, and downregulated Wnt-10a, Ppp3c, Notch1 and Trim27 involved in the Wnt signaling pathway, Notch signaling pathway, tyrosine metabolism, MAPK signaling pathway and melanogenesis, might be associated with the albinism of Oscar. This study characterized the difference in melanophore morphology between wild and albino Oscar and identified some albinism-related candidate genes and signaling pathways, helping to understand the genetic mechanism of fish albinism.


Asunto(s)
Albinismo , Cíclidos , Animales , Melaninas , Piel , Transcriptoma
13.
Appl Math ; 36(2): 287-303, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177194

RESUMEN

OBJECTIVES: Firstly, according to the characteristics of COVID-19 epidemic and the control measures of the government of Shaanxi Province, a general population epidemic model is established. Then, the control reproduction number of general population epidemic model is obtained. Based on the epidemic model of general population, the epidemic model of general population and college population is further established, and the control reproduction number is also obtained. METHODS: For the established epidemic model, firstly, the expression of the control reproduction number is obtained by using the next generation matrix. Secondly, the real-time reported data of COVID-19 in Shaanxi Province is used to fit the epidemic model, and the parameters in the model are estimated by least square method and MCMC. Thirdly, the Latin hypercube sampling method and partial rank correlation coefficient (PRCC) are adopted to analyze the sensitivity of the model. CONCLUSIONS: The control reproduction number remained at 3 from January 23 to January 31, then gradually decreased from 3 to slightly greater than 0.2 by using the real-time reports on the number of COVID-19 infected cases from Health Committee of Shaanxi Province in China. In order to further control the spread of the epidemic, the following measures can be taken: (i) reducing infection by wearing masks, paying attention to personal hygiene and limiting travel; (ii) improving isolation of suspected patients and treatment of symptomatic individuals. In particular, the epidemic model of the college population and the general population is established, and the control reproduction number is given, which will provide theoretical basis for the prevention and control of the epidemic in the colleges.

14.
Gen Comp Endocrinol ; 309: 113793, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33887271

RESUMEN

Parental care is common in mammals and allows offspring to obtain milk, a substance rich in a range of nutritional and non-nutritional factors crucial to the survival of newborns. The discus fish Symphysodon spp., an Amazonian cichlid, shows an unusual behaviour: Free-swimming fry bite on their parents' skin mucus for growth and development during the first month after hatching. This is similar to the breastfeeding behaviour of mammals, but little is known about the regulatory mechanism by which discus secrete 'milk' and the related genes involved in parental care. Here, transcriptome sequencing was performed by using the brain tissues of female discus fish in parental and non-parental care. The results showed that a total of 86 differentially expressed genes (71 up-regulated genes and 15 down-regulated genes) were obtained by comparing parental with non-parental discus fish, including up-regulated LAPTM, FOXB, SOX1S, OTX2 and NR1F2, and down-regulated EDNRB, PRKCD, H1-5 and HBE. Through functional enrichment analysis, a total of 20 pathways were identified, e.g., estrogen signaling pathway, inflammatory mediator regulation of TRP channels, vascular smooth muscle contraction, GnRH signaling pathway, neurotrophin signaling pathway, NOD-like receptor signaling pathway, Jak-STAT signaling pathway, Fc gamma R-mediated phagocytosis, serotonergic synapse, autophagy-animal and cytokine-cytokine receptor interaction. These pathways and related genes might play important roles in the regulation of discus 'milk' secretion.


Asunto(s)
Cíclidos , Animales , Encéfalo , Cíclidos/genética , Femenino , Perfilación de la Expresión Génica , Moco/metabolismo , Piel/metabolismo , Transcriptoma
15.
Chemosphere ; 276: 130144, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33690034

RESUMEN

Aquatic animals can be influenced by exposure to microplastics (MPs), but little is known about their recovery capacity following MPs excretion. Here, common carp were exposed to environmentally relevant concentrations of MPs for 30 days and followed by MPs excretion for another 30 days. Growth, isotopic and elemental compositions and intestinal microbiota were investigated. We found that fish growth was not influenced by exposed to MPs but was significantly reduced following MPs excretion, indicating a delayed effect on growth. MPs intake and excretion, however, had no obvious effects on isotopic and elemental compositions. MPs altered the community structure and composition of intestinal microbiota and might reduce functional diversity. After MPs excretion, interestingly, bacterial community structures of MPs treatments were grouped together with the control, suggesting the general resilience of fish intestinal microbiota. Nevertheless, high abundance of pathogenic Shewanella, Plesiomonas and Flavobacterium was observed in MPs treatments but did not affect the functional potential of intestinal microbiota. The results of this study provide new information for the application of adverse outcome pathway (AOP) in MPs, suggesting the necessity of paying attention to recovery assay following MPs intake in the development of AOP frameworks.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Bacterias , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
16.
J Proteomics ; 233: 104085, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33378721

RESUMEN

Discus fish have a variety of body colors including pigmentary and structural colors, studies on specific substances and related metabolic pathways associated with body coloration, however, are scarce to the present. Here, we used single-color (blue, yellow and white) of discus for comparative metabolomics analysis of pigmentary and structural coloration. Statistical model showed significant separations between three colors of discus, suggesting the distinct metabolite profiles of discus pigmentary and structural colors. More astaxanthin was found in yellow discus, which might be the cause of yellow pigmentary color. Moreover, docosahexaenoic acid, arachidonic acid, linoleic acid, eicosapentaenoic acid, 1-stearoyl-2-oleoyl-sn-glycerol 3-phosphocholine, dodecanoic acid and myristic acid related to lipid metabolism and pathways of ABC transporters and biosynthesis of unsaturated fatty acids were more enriched in yellow discus. More adenine, xanthine and hypoxanthine were enriched in blue discus, which might account for the blue structural color. Moreover, amino acids associated with purine biosynthesis, e.g., L-alanine and L-isoleucine, were reduced but pathways of protein digestion and absorption, aminoacyl-tRNA biosynthesis, purine metabolism and glycine, serine and threonine metabolism were enriched in blue discus. Overall, these results reveal specific chromophores and related metabolic pathways involved in pigmentary and structural coloration of discus fish. SIGNIFICANCE: We detected specific chromophores present in skin of pigmentary and structural colors of discus and revealed potential metabolic pathways associated with body coloration. These results contribute to our understanding of the mechanism of body color formation in discus fish.


Asunto(s)
Cíclidos , Pigmentación , Animales , Metabolismo de los Lípidos , Metabolómica
17.
J Hazard Mater ; 404(Pt A): 124121, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33011633

RESUMEN

Microplastics (MPs) can be easily taken up by a wide range of aquatic animals and cause blockage of the digestive tract leading to starvation. Meanwhile, aquatic organisms are facing threats posed by food restriction in both wild and cultured environment. Little knowledge, however, exists on how MPs interact with food conditions to affect aquatic animals. Here, koi carp were exposed to polystyrene MPs (0, 100 or 1000 µg/L) under controlled feeding (satiated or starved) for 30 or 60 days. MPs reduced and interacted synergistically with food conditions on growth after 30 days but antagonistically after 60 days. MPs reduced crude lipid and carbohydrate but increased and antagonistically interacted with feeding conditions on crude protein. Food conditions interacted with MPs on C, N and P but stoichiometric responses were decoupled with macromolecules changes. Food conditions antagonistically interacted with MPs on δ13C after 60 days. Linear discriminant analysis revealed that C:P and N:P were the two most important measured parameters accounting for the response of koi towards MPs and food restriction, presenting an antagonistic interaction of MPs and food status with the prolonged exposure duration.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
18.
Sci Total Environ ; 740: 140082, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32927571

RESUMEN

Microplastics (MPs) serve as a niche for colonization of biofilm-forming microorganisms, termed as plastisphere. Distinct microbial assemblages between MPs and surrounding waters have been well reported, but little is known about driving factors affecting biofilm development on plastic surfaces. Here, to investigate the influence of plastic colors on microbial assemblages, we performed a biofilm incubation experiment, in an aquaculture pond, using MPs in colors (blue, yellow and transparent) that commonly found in the aquatic environments for 30 days. We examined the community structure and function of plastisphere by using 16S rRNA sequencing. The results showed that plastisphere communities exhibited a higher diversity and evenness compared with the water community. MPs especially the blue MPs had more unique species, which might indicate a plastic color/additive-driven selection of microorganisms on MPs. A significant distinctness in bacterial community composition between MPs and the water was found, mainly caused by large amounts of Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium but trace amounts of Microcystis_PCC-7914 on MPs. Due primarily to rich in Aquabacterium but lack of norank_f__norank_o__1-20 on blue MPs than on transparent and yellow MPs, a clear separation between plastisphere communities of three colors of MPs was also observed. Moreover, compared with the water column, the metabolic pathways, e.g., transport and metabolism of amino acid, carbohydrate and inorganic ion, on plastisphere especially those of blue MPs were generally enriched. Biofilms colonizing on blue MPs appeared to have a higher functional diversity than those on transparent or yellow MPs. These results might suggest that plastic colors have impacts on the community structure and functional diversity of plastisphere.

19.
J Hazard Mater ; 399: 123044, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32521315

RESUMEN

Microplastics (MPs) pollution becomes a research hotspot and many studies focus on threats of MPs, but few have integrated multi-level indicators to assess response to MPs of organisms. Here we exposed guppy (Poecilia reticulata) to MPs (polystyrene; 32-40 µm diameter) with two concentrations (100 and 1000 µg/L) for 28 days. We found that higher accumulation of MPs appeared in guppy gill than that in gut. MPs had no obvious effect on guppy growth but significantly inhibited the condition factor. Oxidative stress presented in guppy viscera with activated antioxidants. The decline of Na+/K+-ATP activity in guppy indicated that MPs might interfere with the osmotic balance of gills. MPs reduced body molar ratio of C:N and δ13C value, but no apparent impact on δ15N. It implied that MPs probably altered elemental transition. Eventually, through integrated biomarkers response index (IBR) of guppy, we found that catalase activity was the highest index in response to MPs, and the response of growth performance to MPs was lower than that of oxidative stress and element alteration. Risks of MPs aggravated in a concentration-dependent manner. These findings suggested that multi-level IBR approach should be adopted to quantify effects of MPs on aquatic organisms, especially on fish.


Asunto(s)
Microplásticos , Poecilia , Animales , Antioxidantes , Estrés Oxidativo , Plásticos
20.
Sci Total Environ ; 733: 138929, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32466972

RESUMEN

Microplastics (MPs) are widely distributing in aquatic environment. They are easily ingested by aquatic organisms and accumulate in digestive tract especially of intestine. To explore the potential effects of MPs on intestine, here we, using juvenile guppy (Poecilia reticulata) as experimental animal, investigated the response characteristics of digestion, immunity and gut microbiota. After exposure to 100 and 1000 µg/L concentrations of MPs (polystyrene; 32-40 µm diameters) for 28 days, we observed that MPs could exist in guppy gut and induce enlargement of goblet cells. Activities of digestive enzymes (trypsin, chymotrypsin, amylase and lipase) in guppy gut generally reduced. MPs stimulated the expression of immune cytokines (TNF-α, IFN-γ, TLR4 and IL-6). Through high throughput sequencing of 16S rRNA gene, decreases in diversity and evenness and changed composition of microbiota were found in guppy gut. PICRUSt analysis revealed that MPs might have effects on intestinal microbiota functions, such as inhibition of metabolism and repair pathway. Our findings suggested that MPs could retain in the gut of juvenile guppy, impair digestive performance, stimulate immune response and induce microbiota dysbiosis in guppy gut. The results obtained here provide new insights into the potential risks of MPs to aquatic animals.


Asunto(s)
Microbioma Gastrointestinal , Poecilia , Animales , Disbiosis , Microplásticos , Plásticos , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA