Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(5): 2131-2142, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38186363

RESUMEN

Attaining a high energy density that aligns with practical application requirements is a crucial indicator in the advancement of supercapacitors. In this paper, a hybrid hierarchical electrode structure of N-doped carbon nanotube (NCNT) spheres encapsulated with NiCo-Se nanoparticles (NPs) and coated with nickel-cobalt layered double hydroxide (NiCo-LDH) multilayer nanosheets was successfully synthesized on a nickel foam (NF) substrate. The self-supporting strategy enables nickel-cobalt Prussian blue analogues (Ni-Co PBAs) to be directly attached to the NF surface, which results in fluffy NCNTs with a high length-diameter ratio and considerable yield and greatly enhances the conductivity of the electrode material. The synergistic interaction between the dual transition metal compounds inside and outside the NCNTs enables the hybrid electrode material to achieve an impressive specific capacity of 1899 F g-1 (211.0 mA h g-1) at 1 A g-1. The asymmetric supercapacitor (ASC) exhibits an excellent energy density of 57.6 W h kg-1 at a power density of 798 W kg-1. This study not only provides an attractive strategy for obtaining CNTs with excellent properties from Ni-Co PBA and synthesizing hybrid electrodes with efficient synergistic effects, but also achieves a high energy density that aligns with the practical application demands of supercapacitors.

2.
J Chromatogr A ; 1707: 464282, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37597480

RESUMEN

In this study, enzyme-deep eutectic solvent-assisted ultrasonic extraction technique (EnDUE) was developed for the efficient dissolution of flavonoids from Artemisiae Argyi Folium. The extraction results of Artemisiae Argyi Folium flavonoids (quercetin, luteolin, and isorhamnetin) were used as indicators to investigate the influencing factors through single factor experiment, Placket-burman design, and Box-behnken design, so as to obtain satisfactory yields. After systematic optimization, the optimal conditions for extraction of the target flavonoids were: Choline chloride/1,4-butanediol with a water content of 25%, cellulase+pectinase with a concentration of 1.6%, solid-liquid ratio of 1/32 g/mL, pH of 4.2, ultrasonic frequency of 80 kHz, ultrasonic power of 160 W, ultrasonic temperature of 40 °C, and ultrasonic time of 25 min, respectively, which derived a total yield of 8.06 ± 0.29 mg/g. Compared with the reference techniques, the proposed EnDUE technique showed significant advantages in the yield and extraction efficiency of flavonoids. In addition, after preliminary purification, the Artemisiae Argyi Folium flavonoids showed good antioxidant activity. Deep eutectic solvent (DES) can degrade the cell wall components and increase the action site of enzyme, and enzyme can promote the penetration of DES into the cell wall matrix, which is mutually beneficial to the dissolution of intracellular components. Therefore, the extraction technique proposed in this work (EnDUE) greatly promotes the dissolution of flavonoids from Artemisiae Argyi Folium, and provides theoretical support for the further application of plant flavonoids.


Asunto(s)
Flavonoides , Ultrasonido , Disolventes Eutécticos Profundos , Solubilidad , Butileno Glicoles
3.
Nanoscale ; 15(18): 8255-8269, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37073820

RESUMEN

Herein, Fe3O4@MnO2@Ni-Co/C composites derived from PBAs were successfully fabricated. Firstly, Ni-Co Prussian blue analogues (Ni-Co PBAs) were used as precursors to derive a carbon layer on their surface by annealing treatment and subsequently translated into MnO2@Ni-Co/C nanocubes after hydrothermal reactions. Fe3O4@MnO2@Ni-Co/C composites were finally obtained after depositing Fe3O4 nanoparticles through the annealing process. Their electromagnetic wave (EMW) absorption performance apparently enhanced, thanks to the excellent impedance matching and strong attenuation derived from the synergy between the dielectric loss and the magnetic loss. In particular, the minimum reflection loss (RLmin) of Fe3O4@MnO2@Ni-Co/C reached -41.2 dB with a thickness of 4.0 mm and the effective absorption bandwidth (EAB) reached 7.1 GHz with a thickness of 2.0 mm. Therefore, the results could be significant for synthesizing EMW absorbers with excellent performance, a broad bandwidth, strong absorption, thin thickness and light weight.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...