Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 173: 420-431, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979634

RESUMEN

Wound infections caused by drug-resistant bacteria pose a great threat to human health, and the development of non-drug-resistant antibacterial approaches has become a research priority. In this study, we developed Cu2O-SnO2 doped polydopamine (CSPDA) triple cubic antibacterial nanoenzymes with high photothermal conversion efficiency and good Fenton-like catalase performance. CSPDA antibacterial nanoplatform can catalyze the generation of hydroxyl radical (·OH) from H2O2 at low concentration (50 µg∙mL-1) under 808 nm near-infrared (NIR) irradiation to achieve a combined photothermal therapy (PTT) and chemodynamic therapy (CDT). And the CSPDA antibacterial nanoplatform displays broad-spectrum and long-lasting antibacterial effects against both Gram-negative Escherichia coli (100 %) and Gram-positive Staphylococcus aureus (100 %) in vitro. Moreover, in a mouse wound model with mixed bacterial infection, the nanoplatform demonstrates a significant in vivo bactericidal effect while remaining good cytocompatible. To conclude, this study successfully develops an efficient and long-lasting bacterial infection treatment system. This system provided different options for future studies on the design of synergistic antimicrobial therapy. Hence, the as-synthesized synergetic photothermal therapy and chemodynamic therapy nanoenzymes have rapid and long-term bactericidal ability, well-conglutinant performance and effectively preventing wound infection for clinical application. STATEMENT OF SIGNIFICANCE: Wound infections caused by drug-resistant bacteria pose a great threat to human health, and the development of non-drug-resistant antibacterial approaches has become a research priority. In this study, we developed Cu2O-SnO2 doped polydopamine (CSPDA) triple cubic yolk-like antibacterial nanoenzymes with high photothermal conversion efficiency and Fenton-like catalase effect for photothermal and Chemodynamic antibacterial therapy, Meanwhile, the nanocomposites exhibit good antibioadhesion in a natural water environment for a long-time immersion. In conclusion, this study successfully develops an efficient and long-lasting bacterial infection treatment system. These findings present a pioneering strategy for future research on the design of synergistic antibacterial and antibioadhesive systems.


Asunto(s)
Infecciones Bacterianas , Infección de Heridas , Humanos , Animales , Ratones , Catalasa , Peróxido de Hidrógeno/farmacología , Antibacterianos/farmacología , Modelos Animales de Enfermedad
2.
J Mater Chem B ; 10(44): 9188-9201, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36314575

RESUMEN

Engineered hydrogels with excellent mechanical properties and multi-functionality have great potential as soft electronic skins, tissue substitutes and flexible robotic joints. However, it has been a challenge to construct multifunctional hydrogels, especially when integrating high stretchability, toughness and strength, low hysteresis, good self-healing and adhesion abilities into a hydrogel system simultaneously. Here, we successfully developed a structural hydrogel composed of a reversible covalently cross-link-based poly-N-(2-hydroxyethyl)acrylamide (PHEMAA) network and available plastically deformable casein micelles. Such a design enabled the reversible covalent cross-links and casein micelles to enhance energy dissipation and toughen the PHEMAA/casein hybrid hydrogel synergistically. More importantly, the hydrogel could respond to the imposed strains reversibly by cross-link and micelle deformation induced-network reconstitution, which led to low hysteresis of the hydrogels. The recoverable gel networks still exhibited their effects on energy dissipation at the stress-focused area, endowing the hydrogels with fatigue resistance. As a result, the hydrogels exhibited a compressive strength of 36.5 MPa, high stretchability (1460%), high toughness (∼5.98 MJ m-3), low hysteresis (<30%) and fatigue resistance with almost completely overlapped hysteresis curves during 10 loading cycles. In addition, the introduction of casein micelles and reversible covalent bonding endowed the elastomer hydrogels with high adhesivity, self-healing abilities and biocompatibility.


Asunto(s)
Elastómeros , Hidrogeles , Hidrogeles/química , Micelas , Caseínas , Adhesivos
3.
Front Bioeng Biotechnol ; 10: 991005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172021

RESUMEN

Phase change materials (PCMs) are materials that are stimulated by the external enthalpy change (temperature) to realize solid-liquid and liquid-solid phase transformation. Due to temperature sensitivity, friendly modification, and low toxicity, PCMs have been widely used in smart drug delivery. More often than not, the drug was encapsulated in a solid PCMs matrix, a thermally responsive material. After the trigger implementation, PCMs change into a solid-liquid phase, and the loading drug is released accordingly. Therefore, PCMs can achieve precise release control with different temperature adjustments, which is especially important for small molecular drugs with severe side effects. The combination of drug therapy and hyperthermia through PCMs can achieve more accurate and effective treatment of tumor target areas. This study briefly summarizes the latest developments on PCMs as smart gate-keepers for anti-tumor applications in light of PCMs becoming a research hot spot in the nanomedicine sector in recent years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...