RESUMEN
In this review, we comprehensively analyzed the distribution of microplastics ï¼MPsï¼ in major water ecosystems in China and the fate of MPs during the water treatment process. The removal efficiency of MPs with different colors, sizes, shapes, and materials was also discussed. The results showed that the abundance of microplastics in the aquatic environment was geographically variable and closely related to human activities. Fibrous and transparent ï¼whiteï¼ microplastics were the most common features in China's water ecosystems and water treatment plants, with polypropylene ï¼PPï¼, polyethylene ï¼PEï¼, and polystyrene ï¼PSï¼ being the most common polymer types of microplastics. The removal efficiency of MPs varied from different treatment processes significantly. Pre-treatment and primary treatment in wastewater treatment plants ï¼WWTPsï¼ contributed the most to the removal. In the secondary treatment, the sedimentation tank showed more efficiency than the biological treatment processes. Tertiary treatment processes demonstrated remarkable effectiveness in achieving terminal control of MPs, especially membrane technologies. On the contrary, aeration and hydrodynamic effects may have increased the abundance of MPs in WWTPs. In drinking water treatment plants ï¼DWTPsï¼, coagulation-sedimentation processes were found to be the most effective in removing MPs, followed by filtration and disinfection processes. Further, both pre-treatment and post-treatment steps also made significant contributions to MPs removal.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Purificación del Agua , Microplásticos/aislamiento & purificación , Microplásticos/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , China , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Polipropilenos/químicaRESUMEN
Membrane fouling generated by small molecular-weight aromatic compounds with poor biodegradability is a major barrier to advanced petrochemical wastewater treatment using nanofiltration (NF) technology. In this study, the fouling behavior of ten BTEX with different substituent existing in petrochemical wastewater on the NF membrane was systematically investigated. By examining the effect of the number, position, and type of substituents on the permeability of NF membranes and membrane resistance analysis, combined with XDLVO theory and correlation analysis, we found that stronger dipole-dipole interactions of BTEX with higher polarity and hydrogen bonding effects between substituents and the membrane surface were verified to be the main forces driving the attachment to the surface of membranes. Furthermore, by analyzing the effect of common inorganic ions in petrochemical wastewater on membrane fouling, it was found that electron-donating substituents (-CH3, -C2H5, and -NH2) enhanced the electron cloud density of the benzene ring, a process that exacerbated membrane fouling by strengthening electrostatic interactions between the benzene ring and Ca2+ ions. The fouling potential of electron-withdrawing substituted (-NO2, -OH) BTEX exhibited the opposite trend. Overall, this study provides a theoretical basis for developing effective membrane fouling control strategies in NF advanced treatment of petrochemical wastewater. ENVIRONMENTAL IMPLICATION: Aromatic chemicals in petrochemical effluent are difficult to degrade, and their accumulation will cause significant harm to humans and ecological systems. Determine the composition of small molecule BTEX in petrochemical wastewater, gain an in-depth comprehension of the membrane fouling behavior of nanofiltration membrane filtration, identify the primary forces causing irreversible membrane surface fouling using experimental data and model fitting, and propose viable anti-fouling membrane modification strategies. Establish a technical foundation for membrane fouling management in the long-term operation of petrochemical wastewater membrane treatment.
RESUMEN
The Prussian blue (PB) blending membranes are promising candidates for the removal of trace radionuclide Cs+. Constructing a membrane with high flux and selectivity are challenging in its practical application. Here, a novel polyvinylidene fluoride (PVDF)-PB-graphene oxide (GO) modified membrane was fabricated via phase inversion for trace radionuclide cesium (137Cs) removal from water. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyze chemical composition and morphology of the membrane, and the properties in terms of water flux and Cs+ removal were studied under different PB dosage, pH and co-existing ions conditions. It was observed that the addition of GO improved the dispersion of PB, and the PVDF-PB-GO membrane presented the highest Cs+ removal efficiency (99.6 %) and water flux (1638.2 LMH/bar) at pH = 7 with 0.1 wt% GO and 5 wt% PB. In addition, Langmuir and pseudo-second-order kinetics models fitted well for Cs+ adsorption by the PVDF-PB-GO membrane, illustrating that the Cs+ was removed via chemical adsorption dominated by Fe(CN)64- defect sites of PB and the oxygen groups of GO. Furthermore, the membrane showed a significant selectivity and reusability towards trace radioactive cesium, even in the presence of excess co-existing ions and in real water, which strongly verified that the modified membrane had application potential.
Asunto(s)
Grafito , Contaminantes Químicos del Agua , Adsorción , Cesio/química , Ferrocianuros , Polímeros de Fluorocarbono , Grafito/química , Iones/análisis , Cinética , Polivinilos , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisisRESUMEN
After normal alkali treatment process, the industrial Cr(VI) containing wastewater still contains a ppm level of Cr(VI) ions which should be further purified before discharging. In this study, the Cr(VI)-containing wastewater has been efficiently treated by the porous paper sludge-based activated carbon (psAC) with an excellent specific surface area and rich oxygen functional groups. The batch experimental results showed that under acidic conditions, pH has little effect on the Cr(VI) removal. The kinetic and isotherms studies showed that the Elovich and Freundlich model could describe the adsorption process well and the maximum adsorption capacity of psAC was 54.04 mg/g. The thermodynamic studies indicated that the reaction process was endothermic and spontaneous. Adsorption enthalpy was 17.37 kJ/mol, showing that the chemisorption process was a hydrogen bonding-controlled that has been also verified by some analytical techniques. Lastly, this study also provided an idea for reutilization of waster Cr(VI)-contained psAC in furfural hydrogenation.