RESUMEN
BACKGROUND: Chronic Myeloid Leukemia (CML) is a blood cancer that remains challenging to cure due to drug resistance and side effects from current BCR-ABL inhibitors. There is an urgent need for novel and more effective BCR-ABL targeting inhibitors and therapeutic strategies to combat this deadly disease. METHOD: We disclose an "OH-implant" strategy to improve a noncovalent BCR-ABL inhibitor, PPY-A, by adding a hydroxyl group to its scaffold. By taking advantage of this OH "hot spot", we designed a panel of irreversible covalent kinase inhibitors and hypoxia-responsive pro-/dual-drugs, and their biological activities were studied in vitro, in cellulo and in vivo. RESULT: The resulting compound B1 showed enhanced solubility and biological activity. B4 achieved sustained BCR-ABL inhibition by forming a stable covalent bond with ABL kinase. Hypoxia-responsive prodrug P1 and dual-drugs D1/D2/D3 demonstrated significant anti-tumor effects under hypoxic conditions. The in vivo studies using K562-xenografted mice showed that B1 displayed superior antitumor activity than PPY-A, while P1 and D3 offered better safety profiles alongside significant tumor control. CONCLUSION: We have successfully developed a chemical biology approach to convert a known noncovalent BCR-ABL inhibitor into more potent and safer inhibitors through covalent and pro-/dual-drug targeting strategies. Our "OH-implant" approach and the resulting drug design strategies have general applicability and hold promise for improvement the performance of various other reported drugs/drug candidates, thereby providing advanced medicines for disease treatment.
RESUMEN
Reversible lysine acetylation is an important post-translational modification (PTM). This process in cells is typically carried out enzymatically by lysine acetyltransferases and deacetylases. The catalytic lysine in the human kinome is highly conserved and ligandable. Small-molecule strategies that enable post-translational acetylation of the catalytic lysine on kinases in a target-selective manner therefore provide tremendous potential in kinase biology. Herein, we report the first small molecule-induced chemical strategy capable of global acetylation of the catalytic lysine on kinases from mammalian cells. By surveying various lysine-acetylating agents installed on a promiscuous kinase-binding scaffold, Ac4 was identified and shown to effectively acetylate the catalytic lysine of >100 different protein kinases from live Jurkat/K562 cells. In order to demonstrate that this strategy was capable of target-selective and reversible chemical acetylation of protein kinases, we further developed six acetylating compounds on the basis of VX-680 (a noncovalent inhibitor of AURKA). Among them, Ac13/Ac14, while displaying excellent in vitro potency and sustained cellular activity against AURKA, showed robust acetylation of its catalytic lysine (K162) in a target-selective manner, leading to irreversible inhibition of endogenous kinase activity. The reversibility of this chemical acetylation was confirmed on Ac14-treated recombinant AURKA protein, followed by deacetylation with SIRT3 (a lysine deacetylase). Finally, the reversible Ac13-induced acetylation of endogenous AURKA was demonstrated in SIRT3-transfected HCT116 cells. By disclosing the first cell-active acetylating compounds capable of both global and target-selective post-translational acetylation of the catalytic lysine on kinases, our strategy could provide a useful chemical tool in kinase biology and drug discovery.
Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Humanos , Acetilación , Lisina/química , Lisina/metabolismo , Células K562 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Células Jurkat , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Aurora Quinasa A/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/químicaRESUMEN
Remarkable progress has been made in the development of cysteine-targeted covalent inhibitors. In kinase drug discovery, covalent inhibitors capable of targeting other nucleophilic residues (i.e. lysine, or K) have emerged in recent years. Besides a highly conserved catalytic lysine, almost all human protein kinases possess an equally conserved glutamate/aspartate (e.g. E/D) that forms a K-E/D salt bridge within the enzyme's active site. Electrophilic ynamides were previously used as effective peptide coupling reagents and to develop E/D-targeting covalent protein inhibitors/probes. In the present study, we report the first ynamide-based small-molecule inhibitors capable of inducing intramolecular cross-linking of various protein kinases, leading to subsequent irreversible inhibition of kinase activity. Our strategy took advantage of the close distance between the highly conserved catalytic K and E/D residues in a targeted kinase, thus providing a conceptually general approach to achieve irreversible kinase inhibition with high specificity and desirable cellular potency. Finally, this ynamide-facilitated, ligand-induced mechanism leading to intramolecular kinase cross-linking and inhibition was unequivocally established by using recombinant ABL kinase as a representative.
Asunto(s)
Inhibidores de Proteínas Quinasas , Bibliotecas de Moléculas Pequeñas , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Reactivos de Enlaces Cruzados/química , Proteínas Quinasas/metabolismo , Proteínas Quinasas/química , Estructura Molecular , Amidas/química , Amidas/farmacologíaRESUMEN
Biological soil crust (biocrust) is widely distributed on the Loess Plateau and plays multiple roles in regulating ecosystem stability and multifunctionality. Few reports are available on the distribution characteristics of biocrust in this region, which limits the assessment of its ecological functions. Based on 388 sampling points in different precipitation zones on the Loess Plateau from 2009 to 2020, we analyzed the coverage, composition, and influencing factors of biocrust across different durations since land abandonment, precipitation levels, topography (slope aspect and position), and utilization of abandoned slopelands (shrubland, forest, and grassland). On this base, with the assistance of machine learning and spatial modeling methods, we generated a distribution map of biocrust and its composition at a resolution of 250 m × 250 m, and analyzed the spatial distribution of biocrust on the Loess Plateau. The results showed that the average biocrust coverage in the woodlands and grasslands was 47.3%, of which cyanobacterial crust accounted for 25.5%, moss crust 19.7%, and lichen crust 2.1%. There were significant temporal and spatial variations. Temporally, the coverage of biocrust in specific regions fluctuated with the extension of the abandoned durations and coverage of cyanobacterial crust, while moss crust showed a reverse pattern. In addition, the coverage of biocrust in the wet season was slightly higher than that in the dry season within a year. Spatially, the coverage of biocrusts on the sandy lands area on the Loess Plateau was higher and dominated by cyanobacterial crusts, while the coverage was lower in the hilly and gully area. Precipitation and utilization of abandoned land were the major factors driving biocrust coverage and composition, while slope direction and position did not show obvious effect. In addition, soil organic carbon content, pH, and texture were related to the distribution of biocrust. This study uncovered the spatial and temporal variability of biocrust distribution, which might provide important data support for the research and management of biocrust in the Loess Plateau region.
Asunto(s)
Ecosistema , Bosques , Líquenes , Suelo , Análisis Espacio-Temporal , China , Suelo/química , Líquenes/crecimiento & desarrollo , Pradera , Cianobacterias/crecimiento & desarrollo , Microbiología del Suelo , Altitud , Monitoreo del Ambiente , Briófitas/crecimiento & desarrollo , Árboles/crecimiento & desarrolloRESUMEN
Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO2 F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells. We concurrently developed reversible covalent ABPs (15/16) by installing salicylaldehydes (SA) onto a promiscuous kinase-binding scaffold. The stability and amine reactivity of these probes exhibited a broad range of tunability. X-ray crystallography and mass spectrometry (MS) confirmed the successful covalent engagement between ArOSO2 F on 9 and the catalytic lysine of SRC kinase. Chemoproteomic studies enabled the profiling of >300 endogenous kinases, thus providing a global landscape of ligandable catalytic lysines of the kinome. By further introducing these aminophiles into VX-680 (a noncovalent inhibitor of AURKA kinase), we generated novel lysine-reactive TCIs that exhibited excellent in vitro potency and reasonable cellular activities with prolonged residence time. Our work serves as a general guide for the development of lysine-reactive ArOSO2 F-based TCIs.
Asunto(s)
Lisina , Fosfotransferasas , Animales , Humanos , Lisina/química , Unión Proteica , Espectrometría de Masas , Catálisis , Mamíferos/metabolismoRESUMEN
IMPORTANCE: In the unicellular parasites Leishmania spp., the etiological agents of leishmaniasis, a complex infectious disease that affects 98 countries in 5 continents, chemical inhibition of HSP90 protein leads to differentiation from promastigote to amastigote stage. Recent studies indicate potential role for protein phosphorylation in the life cycle control of Leishmania. Also, recent studies suggest a fundamentally important role of RNA-binding proteins (RBPs) in regulating the downstream effects of the HSP90 inhibition in Leishmania. Phosphorylation-dephosphorylation dynamics of RBPs in higher eukaryotes serves as an important on/off switch to regulate RNA processing and decay in response to extracellular signals and cell cycle check points. In the current study, using a combination of highly sensitive TMT labeling-based quantitative proteomic MS and robust phosphoproteome enrichment, we show for the first time that HSP90 inhibition distinctively modulates global protein phosphorylation landscapes in the different life cycle stages of Leishmania, shedding light into a crucial role of the posttranslational modification in the differentiation of the parasite under HSP90 inhibition stress. We measured changes in phosphorylation of many RBPs and signaling proteins including protein kinases upon HSP90 inhibition in the therapeutically relevant amastigote stage. This work provides insights into the importance of HSP90-mediated protein cross-talks and regulation of phosphorylation in Leishmania, thus significantly expanding our knowledge of the posttranslational modification in Leishmania biology.
Asunto(s)
Leishmania mexicana , Leishmania , Leishmania mexicana/metabolismo , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Leishmania/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteoma/metabolismoRESUMEN
Herein, we report a salicylaldehyde-based, reversible covalent inhibitor (A2) that possesses moderate cellular activity against AURKA with a prolonged residence time and shows significant non-covalent inhibition towards LRRK2. Our results indicated that this multitarget kinase inhibitor may be used as the starting point for future development of more potent, selective and dual-targeting covalent kinase inhibitors against AURKA and LRRK2 for mitophagy.
Asunto(s)
Aurora Quinasa A , Mitofagia , Inhibidores de Proteínas Quinasas/farmacologíaRESUMEN
EGFR signaling is involved in multiple cellular processes including cell proliferation, differentiation and development, making this protein kinase one of the most valuable drug targets for the treatment of non-small cell lung carcinomas (NSCLC). Herein, we describe the design and synthesis of a series of potential covalent inhibitors targeting the catalytically conserved lysine (K745) of EGFR on the basis of Erlotinib, an FDA-approved first-generation EGFR drug. Different amine-reactive electrophiles were introduced at positions on the Erlotinib scaffold proximal to K745 in EGFR. The optimized compound 26 (as well as its close analog 30), possessing a novel arylfluorosulfate group (ArOSO2F), showed excellent in vitro potency (as low as 0.19 nM in independent IC50 determination) and selectivity against EGFR and many of its drug-resistant mutants. Both intact protein mass spectrometry (MS) and site-mapping analysis revealed that compound 26 covalently bound to EGFR at K745 through the formation of a sulfamate. In addition, compound 26 displayed good anti-proliferative potency against EGFR-overexpressing HCC827 cells by inhibiting endogenous EGFR autophosphorylation. The pharmacokinetic studies of compound 26 demonstrated the druggable potential of other ArOSO2F-containing compounds. Finally, competitive activity-based protein profiling (ABPP), cellular thermal shift assay (CETSA), as well as cellular wash-out experiments, all showed compound 26 to be the first cell-active, fluorosulfate-based targeted covalent inhibitor (TCI) of protein kinases capable of covalently engaging the catalytically conserved lysine of its target in live mammalian cells.
Asunto(s)
Neoplasias Pulmonares , Lisina , Animales , Humanos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Receptores ErbB , Inhibidores de Proteínas Quinasas/química , Proliferación Celular , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , Mamíferos/metabolismoRESUMEN
Metabolic reprogramming of cells, from the normal mode of glucose metabolism named glycolysis, is a pivotal characteristic of impending cancerous cells. Pyruvate kinase M2 (PKM2), an important enzyme that catalyzes the final rate-limiting stage during glycolysis, is highly expressed in numerous types of tumors and aids in development of favorable conditions for the survival of tumor cells. Increasing evidence has suggested that PKM2 is one of promising targets for innovative drug discovery, especially for the developments of antitumor therapeutics. Herein, we systematically summarize the recent advancement on PKM2 modulators including inhibitors and activators in cancer applications. We also discussed the classifications of pyruvate kinases in mammals and the biological functions of PKM2 in this review. We do hope that this review would provide a comprehensive understanding of the current research on PKM2 modulators, which may benefit the development of more potent PKM2-related drug candidates to treat PKM2-associated diseases including cancers in future.
RESUMEN
5-aminolevulinic acid (ALA) is a clinically approved prodrug involved in intracellular Heme biosynthesis to produce the natural photosensitizer (PS) Protoporphyrin IX (PpIX). ALA based photodynamic therapy (PDT) has been used to treat various malignant and non-malignant diseases. However, natural ALA has disadvantages such as weak lipophilicity, low stability and poor bioavailability, greatly reducing its clinical performance. The emerging nanotechnology is expected to address these limitations and thus improve the therapeutic outcomes. Herein, we summarized important recent advances in the design of ALA-based prodrugs using nanotechnology to improve the efficacy of PDT. The potential limitations and future perspectives of ALA-based nanomedicines are also briefly presented and discussed.
RESUMEN
Lysine-targeting irreversible covalent inhibitors have attracted growing interests in recent years, especially in the fields of kinase research. Despite encouraging progress, few chemistries are available to develop inhibitors that are exclusively lysine-targeting, selective, and cell-active. We report herein a 2-ethynylbenzaldehyde (EBA)-based, lysine-targeting strategy to generate potent and selective small-molecule inhibitors of ABL kinase by selectively targeting the conserved catalytic lysine in the enzyme. We showed the resulting compounds were cell-active, capable of covalently engaging endogenous ABL kinase in K562 cells with long-residence time and few off-targets. We further validated the generality of this strategy by developing EBA-based irreversible inhibitors against EGFR (a kinase) and Mcl-1 (a nonkinase) that covalently reacted with the catalytic and noncatalytic lysine within each target.
RESUMEN
Autophagy induced by nanomaterials is one of the intracellular catabolic pathways that degrade and recycle the biomacromolecules and damaged organelles in cells and has emerged as a very promising pharmacological target critical to future drug development and anti-cancer therapy. Herein, we developed mesopore-encaged highly-dispersed active cluster-like MnOx in nanosilica entitled MnO-MS, with a size of around 130 nm. Our studies show that MnO-MS could not only obviously induce autophagy in both stable GFP-LC3 HeLa cells and GFP-LC3-mCherry HeLa cells but also could selectively inhibit lung cancer A549 cell growth at 11.19 µg mL-1 (IC50) while exhibiting little cytotoxicity in normal cells. Encouraged by these interesting results, a further mechanistic study reveals that reactive oxygen species (ROS) were excited by the active MnOx in nanosilica, leading to the disruption of mitochondrial membrane potential (MMP), enhancement of ATG5A/ATG16L/ATG4B/Beclin1, and finally, inhibition of the mTOR signaling pathways. Collectively, these findings indicate that MnO-MS-induced cell death via autophagy pathways in cancer cells. Furthermore, MnO-MS significantly inhibited tumor growth with minimal side effects in vivo, and it is envisioned that MnO-MS can be further developed as a potential autophagy inducer for the treatment of lung cancers.
Asunto(s)
Apoptosis , Neoplasias Pulmonares , Humanos , Células HeLa , Neoplasias Pulmonares/patología , Autofagia , Pulmón/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Cell nucleus is the desired subcellular organelle of many therapeutic drugs. Although numerous nanomaterial-based methods have been developed which could facilitate nuclear-targeted delivery of small-molecule drugs, few are known to be capable of delivering exogenous native proteins. Herein, we report a convenient and highly robust approach for effective nuclear-targeted delivery of native proteins/antibodies by using biodegradable silica nanocapsules (BSNPs) that were surface-modified with different nuclear localization signals (NLS) peptides. We found that, upon gaining entry to mammalian cells via endocytosis, such nanocapsules (protein@BSNP-NLS) could effectively escape from endolysosomal vesicles with the assistance of an endosomolytic peptide (i.e., L17E), accumulate in cell nuclei and release the encapsulated protein cargo with biological activities. Cloaked with HeLa cell membrane, DNase@BSNP-NLS/L17E-M (with L17E encapsulated) homologously delivered functional proteins to cancer cell nuclei in tumor-xenografted mice. In vitro and in vivo anti-tumor properties, such as long blood circulation time and effective tumor growth inhibition, indicate that the nuclear-targeted cell-membrane-cloaked BSNPs (DNase@BSNP-NLS/L17E-M) platform is a promising therapeutic approach to nuclear related diseases.
Asunto(s)
Nanocápsulas , Neoplasias , Humanos , Animales , Ratones , Nanocápsulas/química , Células HeLa , Proteínas/metabolismo , Péptidos/química , Señales de Localización Nuclear , Desoxirribonucleasas/metabolismo , Núcleo Celular/metabolismo , Mamíferos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismoRESUMEN
Background: Wound healing of skin is a complicated process. Cutaneous innervation and neurotrophic factors could participate in multiple stages of wound healing. Neurotrophic factors are mainly produced and released by neurons and neural stem cells (NSCs) which could be obtained in large quantities from human-induced pluripotent stem cells (iPSCs) in vitro. However, the potential wound healing effects of NSC secretions, such as exosomes, are unexplored yet. Methods: NSCs-derived exosomes (NSC-exo) and iPSCs-derived exosomes (iPSC-exo) were isolated from the cell culture supernatants by centrifugation, and then quantified and characterized. The effects of these exosomes on the migration of human dermal fibroblasts (HDF) cells and the tube formation of human umbilical vein endothelial cells (HUVECs) were investigated in vitro. And the in vivo wound healing effect of these exosomes were tested on the mouse skin trauma model. Therefore, a dipeptide/hyaluronic acid (Nap-FF/HA) composite hydrogel was used to encapsulate the exosomes as a sustained release carrier. Histological observations were performed to evaluate the wound healing effect of exosomes. Furthermore, the non-labeling proteomic analysis was performed to explore the possible mechanisms of NSC-exo on wound healing. Results: We obtained extracellular vesicles in a bowl-like structure with membranes which meet the general standards of exosomes. NSC-exo showed promotion effect on the migration of HDF cells and the tube formation of HUVECs in vitro. In a mouse skin injury model, NSC-exo enhanced the wound healing and the Nap-FF/HA hydrogel that contained exosomes did so with less drug frequency by sustaining release of exosomes. Further proteomic analysis demonstrated that the carried neurotrophic factors and immunity-related proteins in NSC-exo may play a functional role in wound healing. Conclusion: NSC-exo may enhance wound healing via neurotrophic factors and immunomodulation.
Asunto(s)
Exosomas , Células-Madre Neurales , Ratones , Animales , Humanos , Proteómica , Movimiento Celular/fisiología , Exosomas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Factores de Crecimiento Nervioso/metabolismoRESUMEN
Biological soil crusts (biocrusts) are the common cover in arid and semiarid areas. Together with plants, biocrusts affect runoff and flow velocity. However, few studies have focused on the effects of the co-covering of plant and biocrust (plant+biocrust) on the flow velocity, with a knowledge gap in the study of driving factors for slope erosion in arid and semiarid areas. In this study, simulated rainfall experiments were used to investigate the effects of biocrust and three types of biocrusts (more cyanobacteria less moss, more moss less cyanobacteria, and moss) on the flow velocity of revegetated grassland in the hilly Loess Plateau. The results showed that plant and plant+biocrust significantly reduced flow velocity, with that of plants and plant+biocrust being 70.7% and 83.1% lower than bare soil. The reduction benefits of plant and biocrust on flow velocity were 70.7% and 12.4%, respectively, when they were co-covered. Biocrust composition under plant cover affected flow velocity. The reduction benefits of more cyanobacteria less moss, more moss less cyanobacteria, and moss crust on flow velocity were 11.5%, 12.4%, and 19.4%, respectively. There was a significant negative correlation between flow velocity and moss coverage and a significant positive correlation between flow velocity and cyanobacteria coverage. The relationship between moss cove-rage (x) and flow velocity (y) was y=-2.081x+0.03 (R2=0.469). The moss coverage was a key factor affecting the flow velocity of co-covering of plant and biocrust slope with similar plant coverage (40%±10%). In conclusion, biocrusts under plant cover significantly slowed flow velocity, and the effect magnitude was related to its composition, implying that the role of biocrusts should be considered in understanding the mechanism underlying slope erosion in revegetated grassland.
Asunto(s)
Briófitas , Cianobacterias , China , Ecosistema , Pradera , Suelo , Microbiología del SueloRESUMEN
Sepsis is a life-threatening syndrome with disturbed host responses to severe infections, accounting for the majority of death in hospitalized patients. However, effective medicines are currently scant in clinics due to the poor understanding of the exact underlying mechanism. We previously found that blocking caspase-11 pathway (human orthologs caspase-4/5) is effective to rescue coagulation-induced organ dysfunction and lethality in sepsis models. Herein, we screened our existing chemical pools established in our lab using bacterial outer membrane vesicle (OMV)-challenged macrophages, and found 7-(diethylamino)-1-hydroxy-phenothiazin-3-ylidene-diethylazanium chloride (PHZ-OH), a novel phenothiazinium-based derivative, was capable of robustly dampening caspase-11-dependent pyroptosis. The in-vitro study both in physics and physiology showed that PHZ-OH targeted AP2-associated protein kinase 1 (AAK1) and thus prevented AAK1-mediated LPS internalization for caspase-11 activation. By using a series of gene-modified mice, our in-vivo study further demonstrated that administration of PHZ-OH significantly protected mice against sepsis-associated coagulation, multiple organ dysfunction, and death. Besides, PHZ-OH showed additional protection on Nlrp3-/- and Casp1-/- mice but not on Casp11-/-, Casp1/11-/-, Msr1-/-, and AAK1 inhibitor-treated mice. These results suggest the critical role of AAK1 on caspase-11 signaling and may provide a new avenue that targeting AAK1-mediated LPS internalization would be a promising therapeutic strategy for sepsis. In particular, PHZ-OH may serve as a favorable molecule and an attractive scaffold in future medicine development for efficient treatment of bacterial sepsis.
Asunto(s)
Lipopolisacáridos , Prometazina/farmacología , Sepsis , Animales , Caspasa 1 , Caspasas/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Piroptosis , Sepsis/tratamiento farmacológico , Sepsis/metabolismoRESUMEN
Hypochlorous acid/hypochlorite (HOCl/ClO-) plays important roles in killing bacterial and causing damage to living tissues, and its abnormal levels could lead to many diseases. Although great efforts have been devoted, fluorescent probes for HOCl/ClO- with near-infrared fluorescence, good selectivity/sensitivity, and low background are still important and urgent. In this work, a novel double-bond-linked TCF-aza-BODIPY-based near-infrared fluorescent probe (3) was rationally designed, successfully prepared, and applied for sensing HOCl/ClO- in both solutions and living RAW264.7 cells, showing good selectivity and fluorescence "turn-on" phenomenon at 670 nm with low background. The limit of detection towards ClO- was determined to be 0.36 µM through the linear fluorescence changes at 670 nm in a broad ClO--concentration range of 0-150 µM. Furthermore, the sensing mechanism was investigated by mass spectrometry and compared with 1, suggesting that the remarkable spectroscopic changes could be ascribed to the oxidization of the double bond to the aldehyde group, accompanied with the leaving of the TCF group. Confocal imaging experiments also confirmed the remarkable intracellular fluorescence enhancements through incubation of ClO- and phorbol ester 12-myristate 13-acetate (PMA) in RAW264.7 cells. Therefore, for the first time, we reported a near-infrared TCF-aza-BODIPY-based fluorescent probe for highly sensitive and fluorescence "turn-on" detection of both exogenous and endogenous HOCl in living RAW264.7 cells through the quick oxidation of a conjugated double bond.
Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Compuestos de Boro/química , Colorantes Fluorescentes/química , Ácido Hipocloroso/análisis , Microscopía Fluorescente/métodosRESUMEN
Despite recent interests in developing lysine-targeting covalent inhibitors, no general approach is available to create such compounds. We report herein a general approach to develop cell-active covalent inhibitors of protein kinases by targeting the conserved catalytic lysine residue using key SuFEx and salicylaldehyde-based imine chemistries. We validated the strategy by successfully developing (irreversible and reversible) covalent inhibitors against BCR-ABL kinase. Our lead compounds showed high levels of selectivity in biochemical assays, exhibited nanomolar potency against endogenous ABL kinase in cellular assays, and were active against most drug-resistant ABL mutations. Among them, the salicylaldehyde-containing A5 is the first-ever reversible covalent ABL inhibitor that possessed time-dependent ABL inhibition with prolonged residence time and few cellular off-targets in K562 cells. Bioinformatics further suggested the generality of our strategy against the human kinome.
Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Células K562 , Lisina/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacologíaRESUMEN
With the deepening of our understanding in life science, molecular biology, nanotechnology, optics, electrochemistry and other areas, an increasing number of biosensor design strategies have emerged in recent years, capable of providing potential practical applications for point-of-care (POC) diagnosis in various human diseases. Compared to conventional biosensors, the latest POC biosensor research aims at improving sensor precision, cost-effectiveness and time-consumption, as well as the development of versatile detection strategies to achieve multiplexed analyte detection in a single device and enable rapid diagnosis and high-throughput screening. In this review, various intriguing strategies in the recognition and transduction of POC (from 2018 to 2021) are described in light of recent advances in CRISPR technology, electrochemical biosensing, and optical- or spectra-based biosensing. From the perspective of promoting emerging bioanalytical tools into practical POC detecting and diagnostic applications, we have summarized key advances made in this field in recent years and presented our own perspectives on future POC development and challenges.