Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764636

RESUMEN

Two-dimensional (2D) black phosphorus (BP) is considered an ideal building block for field-effect transistors (FETs) owing to its unique structure and intriguing properties. To achieve high-performance BP-FETs, it is essential to establish a reliable and low-resistance contact between the BP and the electrodes. In this study, we employed a localized Joule heating method to improve the contact between the 2D BP and gold electrodes, resulting in enhanced BP-FET performance. Upon applying a sufficiently large source-drain voltage, the zero-bias conductance of the device increased by approximately five orders of magnitude, and the linearity of the current-voltage curves was also enhanced. This contact improvement can be attributed to the formation of gold phosphide at the interface of the BP and the gold electrodes owing to current-generated localized Joule heat. The fabricated BP-FET demonstrated a high on/off ratio of 4850 and an on-state conductance per unit channel width of 1.25 µS µm-1, significantly surpassing those of the BP-FETs without electrical annealing. These findings offer a method to achieve a low-resistance BP/metal contact for developing high-performance BP-based electronic devices.

2.
Nanoscale Adv ; 5(9): 2427-2436, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37143813

RESUMEN

The performance of diodes, which are the basic building blocks in integrated circuits, highly depends on the materials used. Black phosphorus (BP) and carbon nanomaterials with unique structures and excellent properties can form heterostructures with favorable band matching to fully utilize their respective advantages and thus achieve high diode performance. Here, high-performance Schottky junction diodes based on a two-dimensional (2D) BP/single-walled carbon nanotube (SWCNT) film heterostructure and a BP nanoribbon (PNR) film/graphene heterostructure were investigated for the first time. The fabricated Schottky diode based on the heterostructure with the 10 nm-thick 2D BP stacked on the SWCNT film had a rectification ratio of 2978 and a low ideal factor of 1.5. The Schottky diode based on the heterostructure with the PNR film stacked on the graphene exhibited a high rectification ratio of 4455 and an ideal factor of 1.9. The high rectification ratios for both devices were attributed to the large Schottky barriers formed between the BP and carbon materials, thus leading to a small reverse current. We found that the thickness of the 2D BP in the 2D BP/SWCNT film Schottky diode and the stacking order of the heterostructure in the PNR film/graphene Schottky diode had a significant effect on the rectification ratio. Furthermore, the rectification ratio and breakdown voltage of the resulting PNR film/graphene Schottky diode were larger than those of the 2D BP/SWCNT film Schottky diode, which was attributed to the larger bandgap of the PNRs compared to the 2D BP. This study demonstrates that high-performance diodes can be achieved via the collaborative application of BP and carbon nanomaterials.

3.
Small ; 19(17): e2207538, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36890779

RESUMEN

Black phosphorus nanoribbons (PNRs) are ideal candidates for constructing electronic and optoelectronic devices owing to their unique structure and high bandgap tunability. However, the preparation of high-quality narrow PNRs aligned along the same direction is very challenging. Here, a reformative mechanical exfoliation approach combining tape and polydimethylsiloxane (PDMS) exfoliations to fabricate high-quality, narrow, and directed PNRs with smooth edges for the first time is developed. In this method, partially-exfoliated PNRs are first formed on thick black phosphorus (BP) flakes via the tape exfoliation and further peeled off to obtain separated PNRs via the PDMS exfoliation. The prepared PNRs have widths from a dozen to hundreds of nanometers (down to 15 nm) and a mean length of 18 µm. It is found that the PNRs can align along a same direction and the length directions of directed PNRs are along the zigzag direction. The formation of PNRs is attributed to that the BP prefers to be unzipped along the zigzag direction and has an appropriate magnitude of interaction force with the PDMS substrate. The fabricated PNR/MoS2 heterojunction diode and PNR field-effect transistor exhibit good device performance. This work provides a new pathway to achieve high-quality, narrow, and directed PNRs for electronic and optoelectronic applications.

4.
ACS Macro Lett ; 8(10): 1263-1267, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35651158

RESUMEN

We report the use of hyper-cross-linked polymers for synthesis of hollow porous polymeric nanosphere frameworks (HPPNFs) as highly efficient yolk-shell structured catalysts. This approach involves encapsulation of ligand-free metal nanoparticles within the hyper-cross-linked HPPNFs, giving rise to remarkable catalytic activity as well as outstanding reusability toward hydrogenation. By tuning the molecular size of the reactant, we demonstrate intrinsic size selectivity precisely defined by the HPPNF-based catalyst. Because the solvent polarity determines the porosity of the HPPNFs, it provides guidance to design a class of responsive and functional soft materials for use in catalysis technology.

5.
Chem Commun (Camb) ; 51(47): 9612-5, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25930122

RESUMEN

Nanocrystals with high-index facets usually exhibit higher catalytic activities than those with only low-index facets. Trapezohedron-shaped (TS) In2O3 particles with exposed high-index {211} facets were successfully synthesized in an oleic acid (OA) and trioctylamine (TOA) system. It has been demonstrated that the gas sensing activity of TS In2O3 particles with exposed high-index {211} facets is higher than that of octahedron-shaped In2O3 particles with exposed low-index {111} facets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...