Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 13: 1244280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746249

RESUMEN

Chemoresistance often complicates the management of cancer, as noted in the instance of acute myeloid leukemia (AML). Mitochondrial function is considered important for the viability of AML blasts and appears to also modulate chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct pathways could be directly targeted to impact both cell viability and chemoresistance. Therefore, identifying and targeting those precise rogue elements of mitochondrial metabolism could be a valid therapeutic strategy in leukemia. Here, we review the evidence for abnormalities in mitochondria metabolic processes in AML cells, that likely impact chemoresistance. We further address several therapeutic approaches targeting isocitrate dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase (NAMPT), electron transport chain (ETC) complex in AML and also consider the roles of mesenchymal stromal cells. We propose the term "mitotherapy" to collectively refer to such regimens that attempt to override mitochondria-mediated metabolic reprogramming, as used by cancer cells. Mounting evidence suggests that mitotherapy could provide a complementary strategy to overcome chemoresistance in liquid cancers, as well as in solid tumors.

2.
Antib Ther ; 6(2): 87-96, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37077473

RESUMEN

Aberrant post-translational glycosylation is a well-established hallmark of cancer. Altered core fucosylation mediated by α-(1,6)-fucosyltransferase (Fut8) is one of the key changes in tumor glycan patterns that contributes to neoplastic transformation, tumor metastasis, and immune evasion. Increased Fut8 expression and activity are associated with many types of human cancers, including lung, breast, melanoma, liver, colorectal, ovarian, prostate, thyroid, and pancreatic cancer. In animal models, inhibition of Fut8 activity by gene knockout, RNA interference, and small analogue inhibitors led to reduced tumor growth/metastasis, downregulation of immune checkpoint molecules PD-1, PD-L1/2, and B7-H3, and reversal of the suppressive state of tumor microenvironment. Although the biologics field has long benefited tremendously from using FUT8 -/- Chinese hamster ovary cells to manufacture IgGs with greatly enhanced effector function of antibody-dependent cellular cytotoxicity for therapy, it is only in recent years that the roles of Fut8 itself in cancer biology have been studied. Here, we summarize the pro-oncogenic mechanisms involved in cancer development that are regulated by Fut8-mediated core fucosylation, and call for more research in this area where modifying the activity of this sole enzyme responsible for core fucosylation could potentially bring rewarding surprises in fighting cancer, infections, and other immune-related diseases.

3.
Cancer Lett ; 553: 215996, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36343787

RESUMEN

V-set and immunoglobulin domain containing 4 (VSIG4), a type I transmembrane receptor exclusively expressed in a subset of tissue-resident macrophages, plays a pivotal role in clearing C3-opsonized pathogens and their byproducts from the circulation. VSIG4 maintains immune homeostasis by suppressing the activation of complement pathways or T cells and inducing regulatory T-cell differentiation, thereby inhibiting the development of immune-mediated inflammatory diseases but enhancing cancer progression. Consequently, VSIG4 exhibits a potential therapeutic effect for immune-mediated inflammatory diseases, but also is regarded as a novel target of immune checkpoint inhibition in cancer therapy. Recently, soluble VSIG4, the extracellular domain of VSIG4, shed from the surface of macrophages, has been found to be a biomarker to define macrophage activation-related diseases. This review mainly summarizes recent new findings of VSIG4 in macrophage phagocytosis and immune homeostasis, and discusses its potential diagnostic and therapeutic usage in infection, inflammation, and cancer.


Asunto(s)
Neoplasias , Receptores de Complemento , Ratones , Animales , Humanos , Receptores de Complemento/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Neoplasias/terapia , Biología
4.
Front Immunol ; 13: 1032574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389829

RESUMEN

Despite the initially reported high efficacy of vaccines directed against ancestral SARS-CoV-2, repeated infections in both unvaccinated and vaccinated populations remain a major global health challenge. Because of mutation-mediated immune escape by variants-of-concern (VOC), approved neutralizing antibodies (neutAbs) effective against the original strains have been rendered non-protective. Identification and characterization of mutation-independent pan-neutralizing antibody responses are therefore essential for controlling the pandemic. Here, we characterize and discuss the origins of SARS-CoV-2 neutAbs, arising from either natural infection or following vaccination. In our study, neutAbs in COVID-19 patients were detected using the combination of two lateral flow immunoassay (LFIA) tests, corroborated by plaque reduction neutralization testing (PRNT). A point-of-care neutAb LFIA, NeutraXpress™, was validated using serum samples from historical pre-COVID-19 negative controls, patients infected with other respiratory pathogens, and PCR-confirmed COVID-19 patients. Surprisingly, potent neutAb activity was mainly noted in patients generating both IgM and IgG against the Spike receptor-binding domain (RBD), in contrast to samples possessing anti-RBD IgG alone. We propose that low-affinity, high-avidity, germline-encoded natural IgM and subsequent generation of class-switched IgG may have an underappreciated role in cross-protection, potentially offsetting immune escape by SARS-CoV-2 variants. We suggest Reverse Vaccinology 3.0 to further exploit this innate-like defense mechanism. Our proposition has potential implications for immunogen design, and provides strategies to elicit pan-neutAbs from natural B1-like cells. Refinements in future immunization protocols might further boost long-term cross-protection, even at the mucosal level, against clinical manifestations of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína de la Espiga del Coronavirus , Pruebas de Neutralización , Anticuerpos Neutralizantes , Inmunoglobulina G , Células Germinativas , Inmunoglobulina M
5.
Front Surg ; 9: 975552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204338

RESUMEN

Objective: Three-dimensional computed tomography bronchography and angiography (3D-CTBA) can provide detailed imaging information for pulmonary segmentectomy. This study aimed to investigate the safety and effectiveness of 3D-CTBA guidance of anatomical segmentectomy of the right upper lobe (RUL). Methods: This was a retrospective analysis of anatomical segmentectomy of the RUL at the Thoracic Surgery Department of the Fourth Hospital of Hebei Medical University from December 9, 2013, to June 2, 2021. Preoperatively, all patients underwent contrast-enhanced CT of the chest (to determine the size of the pulmonary nodule) and a lung function test. 3D-CTBA has been performed since 2018; patients with vs. without 3D-CTBA were compared. Segmentectomy was performed according to nodule location. Results: Of 139 patients (46 males and 93 females, aged 21-81 years), 93 (66.9%) completed single segmentectomy, 3 (2.2%) completed single subsegmentectomy, 29 had combined subsegmentectomy, 7 had segmentectomy combined with subsegmentectomy, and 6 had combined resection of two segments. Eighty-five (61.2%) patients underwent 3D-CTBA. 3D-CTBA cases had decreased intraoperative blood loss (67.4 ± 17.6 vs. 73.1 ± 11.0, P = 0.021) and shorter operation time (143.0 ± 10.8 vs. 133.4 ± 20.9, P = 0.001). 3D-CTBA (Beta = -7.594, 95% CI: -12.877 to -2.311, P = 0.005) and surgical procedure (Beta = 9.352, 95% CI: 3.551-15.153, P = 0.002) were independently associated with intraoperative blood loss. 3D-CTBA (Beta = -13.027, 95% CI: -18.632 to 17.422, P < 0.001) and surgical procedure (Beta = 7.072, 95% CI: 0.864-13.280, P = 0.026) were also independent factors affecting the operation time. Conclusion: Preoperative use of 3D-CTBA to evaluate the pulmonary vessels and bronchial branch patterns of the RUL decreased blood loss and procedure time and so would be expected to improve the safety and effectiveness of thoracoscopic segmentectomy.

6.
Parasit Vectors ; 15(1): 300, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002836

RESUMEN

BACKGROUND: Hepatic macrophages regulate liver granuloma formation and fibrosis caused by infection with Schistosoma japonicum, with the manner of regulation dependent on macrophage activation state. Interleukin (IL)-37 may have immunomodulatory effects on macrophages. However, whether IL-37 can affect liver granuloma formation and fibrosis by affecting the polarization of macrophages in S. japonicum infection remains unclear. The aim of this study was to investigate IL-37-affected macrophage polarization in liver granuloma formation and fibrosis in S. japonicum infection. METHODS: An enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of IL-37 in the serum of patients with acute S. japonicum infection and in the serum of healthy people. Recombinant IL-37 (rIL-37), CPP-IgG2Fc-IL-37 and no CPP-IgG2Fc-IL-37 proteins were injected into S. japonicum-infected mice every 3 days for a total of 6 times from day 24 post infection onwards. Subsequently, ELISA, quantitative reverse transcription-PCR, fluorescence-activated cell sorting and western blot were used to analyze whether IL-37 inhibits the formation of liver granulomas and the development of liver fibrosis by regulating the phenotypic transition of macrophages. Finally, the three IL-37 proteins and SIS3, a Smad3 inhibitor, were co-cultured in mouse peritoneal macrophages to explore the mechanism underlying the promotion of the polarization of M0 macrophages to the M2 phenotype by IL-37. RESULTS: Serum IL-37 levels were upregulated in schistosomiasis patients, and this increased level of IL-37 protein apparently alleviated the liver granuloma of mice in infection models. It also could induce liver and peritoneal macrophages to polarize to the M2 phenotype in S. japonicum-infected mice. The S. japonicum-infected mice injected with CPP-IgG2Fc-IL-37 group exhibited the most obvious improvement in inflammatory reaction against the liver granuloma. The number and ratio of M2 macrophages in the liver and peritoneal cavity were significantly higher in the three IL-37 protein groups, especially in the CPP-IgG2Fc-IL-37 group, compared to the controls. Similar results were also found regarding liver function damage. IL-37 induced macrophage M2 polarization by promoting AMP-activated protein kinase (AMPK) phosphorylation in vitro. Among all groups, the activation of AMPK was most significant in the CPP-IgG2Fc-IL-37 group, and it was found that SMAD3 could enhance the anti-inflammatory function of IL-37. CONCLUSIONS: The results show that IL-37 was able to promote the polarization of macrophages to the M2 phenotype, thereby inhibiting the development of schistosomiasis. In comparison to the rIL-37 protein, the CPP-IgG2Fc-IL-37 protein has the advantages of being effective in small doses and having fewer side effects and a better efficacy.


Asunto(s)
Interleucina-1 , Schistosoma japonicum , Esquistosomiasis Japónica , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Fibrosis , Granuloma/patología , Humanos , Inmunoglobulina G/metabolismo , Interleucina-1/metabolismo , Interleucina-1/farmacología , Hígado/patología , Cirrosis Hepática/metabolismo , Activación de Macrófagos , Ratones , Esquistosomiasis Japónica/tratamiento farmacológico , Esquistosomiasis Japónica/patología
7.
J Clin Invest ; 132(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775486

RESUMEN

Immunosuppressive cells accumulating in the tumor microenvironment constitute a formidable barrier that interferes with current immunotherapeutic approaches. A unifying feature of these tumor-associated immune and vascular endothelial cells appears to be the elevated expression of ectonucleotidase CD39, which in tandem with ecto-5'-nucleotidase CD73, catalyzes the conversion of extracellular ATP into adenosine. We glycoengineered an afucosylated anti-CD39 IgG2c and tested this reagent in mouse melanoma and colorectal tumor models. We identified major biological effects of this approach on cancer growth, associated with depletion of immunosuppressive cells, mediated through enhanced Fcγ receptor-directed (FcγR-directed), antibody-dependent cellular cytotoxicity (ADCC). Furthermore, regulatory/exhausted T cells lost CD39 expression, as a consequence of antibody-mediated trogocytosis. Most strikingly, tumor-associated macrophages and endothelial cells with high CD39 expression were effectively depleted following antibody treatment, thereby blocking angiogenesis. Tumor site-specific cellular modulation and lack of angiogenesis synergized with chemotherapy and anti-PD-L1 immunotherapy in experimental tumor models. We conclude that depleting suppressive cells and targeting tumor vasculature, through administration of afucosylated anti-CD39 antibody and the activation of ADCC, comprises an improved, purinergic system-modulating strategy for cancer therapy.


Asunto(s)
Apirasa , Neoplasias , Animales , Antígenos CD/metabolismo , Células Endoteliales/metabolismo , Ratones , Neovascularización Patológica/genética , Microambiente Tumoral
8.
Aging (Albany NY) ; 14(8): 3540-3553, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468097

RESUMEN

MicroRNAs (miRNAs) have been revealed to play a crucial role in oncogenesis of esophageal squamous cell carcinoma (ESCC). However, the biological role of miR-181a-5p in ESCC is currently less explored. The current study was designed to assess whether miR-181a-5p affects ESCC progression and further investigate relevant underlying mechanisms. Based on the data of GSE161533, GSE17351, GSE75241 and GSE67269 downloaded from GEO database, MAP2K1 (MEK1) was revealed to be one overlapping gene of the top 300 DGEs. Additionally, using the predicting software, miR-181a-5p was projected as the presumed target miRNA. Immunohistochemical staining and RT-qPCR research revealed that miR-181a-5p expression was decreased in human tumor tissues relative to surrounding peri-cancerous tissues. In an in vivo experiment, miR-181a-5p mimics could inhibit tumor growth and metastasis of ESCC. Gene expression profiles in combination with gene ontology (GO) and KEGG pathway analysis revealed that MAP2K1 (MEK1) gene and ERK-MMP pathway were implicated in ESCC progression. MiR-181a-5p mimics inhibited the activity of p-ERK1/2, MMP2 and MMP9 in vivo, as shown by Western blotting and immunohistochemistry labeling. There were no variations in the expression of p-P38 and p-JNK proteins. Additionally, miR-181a-5p mimics lowered p-ERK1/2, MMP2 and MMP9 levels in ECA109 cells, which were restored by MEK1-OE lentivirus. MEK1-OE Lentivirus significantly reversed the function induced by miR-181a-5p mimics in ECA109 cells. Moreover, further investigation indicated that the capability of migration, invasion and proliferation was repressed by miR-181a-5p mimics in ECA109 cells. In short, repressed ERK-MMP pathway mediated by miR-181a-5p can inhibit cell migration, invasion and proliferation by targeting MAP2K1 (MEK1) in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Transducción de Señal
9.
Medicine (Baltimore) ; 101(8): e28603, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35212271

RESUMEN

ABSTRACT: The sensitivity and specificity of endoscopic ultrasound (EUS) for esophageal cancer are variable. The aim of the present study was to determine the accuracy of EUS for the T staging of esophageal cancer and to explore the factors that affect the accuracy.This was a retrospective study of patients with esophageal cancer who underwent EUS between January 2018 and September 2019 at the author's hospital. All patients underwent EUS, surgery, and pathological examination. The diagnostic value of ultrasound-based T (uT) staging was evaluated using the pathological T (pT) staging as the gold standard.Finally, 169 patients were included. Among the 169 patients, 37 were overstaged by EUS, 33 were understaged, and 99 were correctly staged. The overall accuracy of EUS was 58.6%. Sensitivity was low, at 0% to 70.8% depending upon the pT stage, but specificity was higher, at 71.0% to 100.0%, also depending upon the pT stage. The multivariable analysis revealed that highly differentiated tumors (odds ratio = 9.167, P = .041) and pT stage ≥T2 (odds ratio = 2.932, P = .004) were independent factors of accurate uT stage.The staging of esophageal cancer using EUS has low sensitivity but high specificity. Highly differentiated tumors and pT stage ≥2 tumors were associated with the accuracy of uT staging.


Asunto(s)
Carcinoma de Células Escamosas/diagnóstico por imagen , Endosonografía/métodos , Neoplasias Esofágicas/diagnóstico por imagen , Anciano , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Sensibilidad y Especificidad
10.
Antib Ther ; 5(1): 55-62, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35146332

RESUMEN

Although mRNA vaccines against SARS-CoV-2 were highly efficacious against severe illness and hospitalization, they seem to be less effective in preventing infection months after vaccination, especially with the Delta variant. Breakthrough infections might be due to higher infectivity of the variants, relaxed protective measures by the general public in "COVID-19 fatigue", and/or waning immunity post-vaccination. Determining the neutralizing antibody levels in a longitudinal manner may address this issue, but technical complexity of classic assays precludes easy detection and quick answers. We developed a lateral flow immunoassay NeutraXpress™ (commercial name of the test kit by Antagen Diagnostics, Inc.) and tested fingertip blood samples of subjects receiving either Moderna or Pfizer vaccines at various time points. With this device, we confirmed the reported clinical findings that mRNA vaccine-induced neutralizing antibodies quickly wane after 3-6 months. Thus, using rapid tests to monitor neutralizing antibody status could help identify individuals at risk, prevent breakthrough infections, and guide social behavior to curtail the spread of COVID-19.

11.
Front Immunol ; 12: 722451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630396

RESUMEN

Natural IgM (nIgM) antibodies play critical roles in cancer immunosurveillance. However, the role of B-1 B cells, the lymphocytes that produce nIgM, remains to be elucidated. L2pB1 cells, a subpopulation of B-1 B cells, have a unique poly-self-reactive nIgM repertoire and are capable of phagocytosis, potent antigen presentation, and immunomodulation. Using an inducible knock-in and knockout mouse model, we investigated the effect of the loss of L2pB1 cells in a B16F10 melanoma model. Our results show active tumor infiltration of L2pB1 cells in wild type mice, and conversely, depletion of L2pB1 cells results in larger tumor mass and increased angiogenesis. In vitro analysis revealed that L2pB1 cells contribute to the growth inhibition of melanoma cells in both 2D cell culture and 3D tumor spheroids. Similar effects were observed in an MC38 murine colon cancer model. Moreover, our data suggest that one of the ways that L2pB1 cells can induce tumor cell death is via lipoptosis. Lastly, we tested whether L2pB1 cell-derived monoclonal nIgM antibodies can specifically recognize tumor spheroids. Nine of the 28 nIgM-secreting L2pB1 clones demonstrated specific binding to tumor spheroids but did not bind control murine embryonic fibroblasts. Our study provides evidence that L2pB1 cells contribute to cancer immunity through their unique nIgM repertoire, tumor recognition, and lipoptosis. Taken together, because of their ability to recognize common features of tumors that are independent of genetic mutations, L2pB1 cells and their nIgM could be potential candidates for cancer treatment that can overcome tumor heterogeneity-associated drug resistance.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Animales , Apoptosis , Subgrupos de Linfocitos B/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Inmunoglobulina M/biosíntesis , Inmunoglobulina M/inmunología , Recuento de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Melanoma Experimental , Ratones , Neoplasias/metabolismo , Neovascularización Patológica/inmunología , Neovascularización Patológica/metabolismo , Esferoides Celulares , Células Tumorales Cultivadas
12.
Front Immunol ; 12: 754710, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712242

RESUMEN

Rhesus macaques are a common non-human primate model used in the evaluation of human monoclonal antibodies, molecules whose effector functions depend on a conserved N-linked glycan in the Fc region. This carbohydrate is a target of glycoengineering efforts aimed at altering antibody effector function by modulating the affinity of Fcγ receptors. For example, a reduction in the overall core fucose content is one such strategy that can increase antibody-mediated cellular cytotoxicity by increasing Fc-FcγRIIIa affinity. While the position of the Fc glycan is conserved in macaques, differences in the frequency of glycoforms and the use of an alternate monosaccharide in sialylated glycan species add a degree of uncertainty to the testing of glycoengineered human antibodies in rhesus macaques. Using a panel of 16 human IgG1 glycovariants, we measured the affinities of macaque FcγRs for differing glycoforms via surface plasmon resonance. Our results suggest that macaques are a tractable species in which to test the effects of antibody glycoengineering.


Asunto(s)
Afinidad de Anticuerpos/inmunología , Inmunoglobulina G/inmunología , Macaca mulatta/inmunología , Modelos Animales , Receptores de IgG/inmunología , Animales , Glicosilación , Humanos , Macaca mulatta/metabolismo , Ingeniería de Proteínas , Isoformas de Proteínas/inmunología , Receptores de IgG/metabolismo
13.
Cell Rep ; 37(4): 109897, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34706243

RESUMEN

Elevated circulating activity of adenosine deaminase 2 (ADA2) is associated with liver fibrosis in nonalcoholic fatty liver disease (NAFLD). In the liver of NAFLD patients, ADA2-positive portal macrophages are significantly associated with the degree of liver fibrosis. These liver macrophages are CD14- and CD16-positive and co-express chemokine receptors CCR2, CCR5, and CXCR3, indicating infiltrative monocyte origin. Human circulatory monocytes release ADA2 upon macrophage differentiation in vitro. When stimulated by recombinant human ADA2 (rhADA2), human monocyte-derived macrophages demonstrate upregulation of pro-inflammatory and pro-fibrotic genes, including PDGF-B, a key pro-fibrotic cytokine. This PDGF-B upregulation is reproduced by inosine, the enzymatic product of ADA2, but not adenosine, and is abolished by E359N, a loss-of-function mutation in ADA2. Finally, rhADA2 also stimulates PDGF-B production from Kupffer cells in primary human liver spheroids. Together, these data suggest that infiltrative monocytes promote fibrogenesis in NAFLD via ADA2-mediated autocrine/paracrine signaling culminating in enhanced PDGF-B production.


Asunto(s)
Adenosina Desaminasa/metabolismo , Comunicación Autocrina , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Macrófagos del Hígado/enzimología , Hígado/enzimología , Monocitos/enzimología , Enfermedad del Hígado Graso no Alcohólico/enzimología , Comunicación Paracrina , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-sis/metabolismo
14.
Antib Ther ; 4(3): 159-170, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34485821

RESUMEN

BACKGROUND: Expressing afucosylated human IgG1 antibodies with Chinese hamster ovary (CHO) cells deficient of α-(1,6)-fucosyltransferase (FUT8) is being more and more accepted as a routine method to enhance antibody-dependent cellular cytotoxicity (ADCC) of therapeutic antibodies, especially for anti-cancer regimens. However, in pre-clinical studies relying on disease models other than mice and primates, e.g., those underrepresented species for infectious diseases, it is less clear whether such afucosylated antibodies can demonstrate enhanced therapeutic index. This is because the orthologues of human FcγRIIIA or mouse FcγRIV from those species have not been well characterized. METHODS: We set up a luciferase-based ADCC assay with Jurkat reporter cells expressing FcγRIIIA/FcγRIV from human, mouse, rat, hamster, guinea pig, ferret, rabbit, cat, dog, pig and monkey, and also produced human, mouse, hamster, rabbit and pig IgG from wild type and Fut8-/- CHO cells or hybridomas. RESULTS: We confirmed that enhanced stimulation through FcγRIIIA/FcγRIV by afucosylated IgG, as compared with wild type IgG, is a cross-species phenomenon. CONCLUSIONS: Thus, efficacy and toxicology studies of the next generation afucosylated therapeutic IgG and Fc fusion proteins in these underrepresented animal models should be expected to generate translatable data for treating human diseases, leading to the expanded applications of this new class of glycoengineered biologics.

15.
Front Immunol ; 12: 614676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897682

RESUMEN

The COVID-19 pandemic has drastically impacted work, economy, and way of life. Sensitive measurement of SARS-CoV-2 specific antibodies would provide new insight into pre-existing immunity, virus transmission dynamics, and the nuances of SARS-CoV-2 pathogenesis. To date, existing SARS-CoV-2 serology tests have limited utility due to insufficient reliable detection of antibody levels lower than what is typically present after several days of symptoms. To measure lower quantities of SARS-CoV-2 IgM, IgG, and IgA with higher resolution than existing assays, we developed a new ELISA protocol with a distinct plate washing procedure and timed plate development via use of a standard curve. Very low optical densities from samples added to buffer coated wells at as low as a 1:5 dilution are reported using this 'BU ELISA' method. Use of this method revealed circulating SARS-CoV-2 receptor binding domain (RBD) and nucleocapsid protein (N) reactive antibodies (IgG, IgM, and/or IgA) in 44 and 100 percent of pre-pandemic subjects, respectively, and the magnitude of these antibodies tracked with antibody levels of analogous viral proteins from endemic coronavirus (eCoV) strains. The disease status (HIV, SLE) of unexposed subjects was not linked with SARS-CoV-2 reactive antibody levels; however, quantities were significantly lower in subjects over 70 years of age compared with younger counterparts. Also, we measured SARS-CoV-2 RBD- and N- specific IgM, IgG, and IgA antibodies from 29 SARS-CoV-2 infected individuals at varying disease states, including 10 acute COVID-19 hospitalized subjects with negative serology results by the EUA approved Abbott IgG chemiluminescent microparticle immunoassay. Measurements of SARS-CoV-2 RBD- and N- specific IgM, IgG, IgA levels measured by the BU ELISA revealed higher signal from 9 of the 10 Abbott test negative COVID-19 subjects than all pre-pandemic samples for at least one antibody specificity/isotype, implicating improved serologic identification of SARS-CoV-2 infection via multi-parameter, high sensitive antibody detection. We propose that this improved ELISA protocol, which is straightforward to perform, low cost, and uses readily available commercial reagents, is a useful tool to elucidate new information about SARS-CoV-2 infection and immunity and has promising implications for improved detection of all analytes measurable by this platform.


Asunto(s)
Envejecimiento/inmunología , Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19 , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/metabolismo , Sensibilidad y Especificidad
16.
Eur J Immunol ; 51(4): 995-998, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33448336
17.
Ann Thorac Cardiovasc Surg ; 27(2): 75-83, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33087661

RESUMEN

BACKGROUND: Cervical anastomotic leakage (CAL) is one of the most common complications that occur minimally invasive esophagectomy (MIE). It is associated with high postoperative mortality. Some risk factors still remained controversial and so accurate prediction of risk groups for CAL remained very difficult. This study aimed to identify the risk factors of CAL after McKeown MIE to predict the accuracy of the technique as early as possible. MATERIAL AND METHODS: A total of 129 patients with esophageal cancer who underwent McKeown MIE at the Department of Thoracic Surgery, the Fourth Hospital of Hebei Medical University, between January 2018 and June 2019 were retrospectively reviewed. Multivariate logistic regression analysis was used to identify the risk factors for CAL and receiver operating characteristic (ROC) curve analysis was used to predict the accuracy for each quantitative data variable and determine the cutoff value. RESULTS: There were statistically significant differences between Group CAL and Group NCAL in FEV1 (p = 0.031), neoadjuvant chemotherapy (p = 0.001), intraoperative minimum PaCO2 (p = 0.002), and hospital stays (p <0.001). In multivariate logistic regression, FEV1 (OR = 0.440, p = 0.047), neoadjuvant chemotherapy (OR = 4.425, p = 0.003), and intraoperative minimum PaCO2 (OR = 1.14, p <0.001) were identified to be three risk factors of CAL. The ROC curve analysis showed that FEV1 <2.18L (p = 0.029) and intraoperative minimum PaCO2 >45.5 mmHg (p = 0.002) demonstrated good accuracy. CONCLUSION: FEV1, neoadjuvant chemotherapy, and intraoperative minimum PaCO2 in arterial blood gas (ABG) were considered as risk factors of CAL after McKeown MIE for esophageal cancer. Preoperative FEV1 <2.18L and intraoperative minimum PaCO2 >45.5 mmHg in ABG showed good accuracy in predicting risk factors for CAL.


Asunto(s)
Fuga Anastomótica/etiología , Neoplasias Esofágicas/cirugía , Esofagectomía/efectos adversos , Pulmón/fisiopatología , Anciano , Quimioterapia Adyuvante/efectos adversos , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Quirúrgicos Mínimamente Invasivos/efectos adversos , Terapia Neoadyuvante/efectos adversos , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Resultado del Tratamiento
18.
Front Immunol ; 12: 758730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992594

RESUMEN

IL-22 plays a crucial role in promoting inflammation, antimicrobial immunity and tissue repair at barrier surfaces. The role of IL-22 in colitis is still controversial: while IL-22 has a protective effect on gut epithelium in acute injuries, it also enhances colitis in a context-dependent manner. Here, we summarize the Yin and Yang of IL-22 in colitis. Particularly, we emphasize the role of innate lymphoid cells (ILCs) in IL-22 production and regulation. A previously underappreciated transcription factor, Musculin (MSC), has been recently identified to be expressed in not only Th17 cells, but also RORγt+/Id2+ IL-22-producing group 3 ILCs in the gut of naïve mice. We hypothesize that the co-expression and interaction of MSC with the key transcription repressor Id2 in developing lymphoid cells (e.g., in LTi cells) and ILC precursors might fine tune the developmental programs or regulate the plasticity of adaptive Th subset and innate ILCs. The much-elevated expression of IL-22 in MSC-/- ILC3s suggests that MSC may function as: 1) a transcription suppressor for cytokines, particularly for IL-22, and/or 2) a gatekeeper for specific lineages of Th cells and innate ILCs as well. Amelioration of colitis symptoms in MSC-/- mice by IL-22-blocking agent IL-22BP-Fc suggests a counterintuitive pathogenic role of IL-22 in the absence of MSC as a checkpoint. The theory that exuberant production of IL-22 under pathological conditions (e.g., in human inflammatory bowel disease, IBD) may cause epithelial inflammation due to endoplasmic reticulum (ER) stress response is worth further investigation. Rheostatic regulation of IL-22 may be of therapeutic value to restore homeostatic balance and promote intestinal health in human colitis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Colitis/inmunología , Interleucinas/inmunología , Linfocitos/inmunología , Células Th17/inmunología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Humanos , Inmunidad Innata/inmunología , Linfocitos/patología , Células Th17/patología , Interleucina-22
19.
Antib Ther ; 3(3): 157-162, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33381681

RESUMEN

Most pathogens establish infection through mucosa, where secretary IgA (sIgA) plays an "immune exclusion" role in humoral defense. Extravasation of intravenously administrated therapeutic IgG mainly relies on convection and/or FcRn-mediated transcytosis from circulation into interstitial space. Active transport of interstitial IgG further across epithelium into mucosa, like sIgA, is a much desired feature for the next generation of therapeutic antibodies, especially for anti-infection purposes. For the first time, we report the engineering of an IgA mimicry of IgG, with its Fc portion in fusion with the 18-aa tail piece (tp) of sIgA and the J chain, possessing sIgA's full binding activity towards Polymeric Immunoglobulin Receptor (pIgR) that mediates mucosa transcytosis. In a Diphtheria toxin receptor (DTR) knockin mouse model, i.v. injected anti-DT IgG(tp)J protected DTR+ cells from deletion upon DT injection. The compact design of IgG(tp)J opens new revenues for more effective therapeutic IgG mimicking some of the important biological functions of IgA.

20.
Inflammation ; 43(4): 1455-1463, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32239394

RESUMEN

Intestinal inflammatory reactions and resulting tissue injuries are two major aspects of inflammatory bowel disease (IBD). The regulatory factors involved in the pathogenesis of IBD remain unclear. Recent studies showed that musculin (MSC) as a transcription suppressor participates in the regulation of certain immune functions. The purpose of this study was to determine the impact of MSC deficiency on colonic injury and inflammatory reaction under IBD, where wild-type (WT, +/+) and MSC-knockout (MSCKO, MSC-/-) mice were induced for disease by dextran sulfate sodium (DSS) in drinking water. Immunohistochemistry hematoxylin-eosin (H&E) staining, enzyme-linked immunosorbent assay (ELISA), and quantitative real-time polymerase chain reaction (qRT-PCR) were used to analyze the matching samples from groups of different genotypes. The colonic epithelial injury in the MSC-/- IBD group was much severer than that in the +/+ IBD group, concurrent with higher IL-22 levels from the supernatant of ex vivo cultured colon tissues in the MSC-/- IBD group than those in the +/+ IBD group. The mRNA levels of IL-22 in mesenteric lymph nodes (MLN) also manifested similar tendency. MSC deficiency may enhance the inflammatory reactions in the gut via excessive secretion of IL-22, leading to aggravated colonic epithelial injury under IBD.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Colon/metabolismo , Mediadores de Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Animales , Colon/efectos de los fármacos , Colon/patología , Sulfato de Dextran/toxicidad , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...