Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 40(1): 281-292, 2019 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-30628285

RESUMEN

Based on a two-step approach, a flower-like MoS2/BiOI composite with a heterojunction has been successfully fabricated. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared MoS2/BiOI. The formation mechanism of this heterostructure was investigated. The valence band (VB) and conduction band (CB) of the MoS2/BiOI heterojunction have been calculated based on electrochemical characterization, implying the formation of a type I band alignment. The photodegradation of Rhodamine B (RhB) and Cr6+ were used to assess photocatalytic reduction and oxidation activities. The results show that the MoS2/BiOI composite structures perform much better than pristine MoS2 and BiOI. Among the composites with various MoS2 contents, 2% MoS2/BiOI exhibits the best efficiency with respect to the degradation of RhB. After irradiation for 20 minutes, the degradation rate of RhB was 98.82%, which is 1.79 times higher than that using pure BiOI. After irradiation for 80 minutes, the removal of Cr6+ was 97.87%, which is 3.85 times higher than that using pure BiOI. Holes and·O2- are the main reactive species during the photocatalytic process of RhB degradation; holes play the leading role.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...