Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746461

RESUMEN

Inspired by the power of transcriptional synthetic receptors and hoping to complement them to expand the toolbox for cell engineering, we establish LIDAR (Ligand-Induced Dimerization Activating RNA editing), a modular post-transcriptional synthetic receptor platform that harnesses RNA editing by ADAR. LIDAR is compatible with various receptor architectures in different cellular contexts, and enables the sensing of diverse ligands and the production of functional outputs. Furthermore, LIDAR can sense orthogonal signals in the same cell and produce synthetic spatial patterns, potentially enabling the programming of complex multicellular behaviors. Finally, LIDAR is compatible with compact encoding and can be delivered by synthetic mRNA. Thus, LIDAR expands the family of synthetic receptors, holding the promise to empower basic research and therapeutic applications.

2.
Org Biomol Chem ; 22(16): 3215-3219, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38567548

RESUMEN

Enabled by triethyl amine (Et3N) and thionyl chloride (SOCl2), an efficient and practical protocol for deoxygenation of sulfoxide to sulfide was developed. This new method features a wide range of substrate scope, including diaryl, dialkyl and aryl alkyl substituted sulfoxides. Detailed mechanistic investigations reveal the crucial role played by Et3N as an electron-donating reductant rather than a hydrogen-atom donor.

3.
bioRxiv ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37873144

RESUMEN

Synthetic biology currently holds immense potential to engineer the spatiotemporal control of intercellular signals for biomedicine. Programming behaviors using protein-based circuits has advantages over traditional gene circuits such as compact delivery and direct interactions with signaling proteins. Previously, we described a generalizable platform called RELEASE to enable the control of intercellular signaling through the proteolytic removal of ER-retention motifs compatible with pre-existing protease-based circuits. However, these tools lacked the ability to reliably program complex expression profiles and required numerous proteases, limiting delivery options. Here, we harness the recruitment and antagonistic behavior of endogenous 14-3-3 proteins to create RELEASE-NOT to turn off protein secretion in response to protease activity. By combining RELEASE and RELEASE-NOT, we establish a suite of protein-level processing and output modules called Compact RELEASE (compRELEASE). This innovation enables functions such as logic processing and analog signal filtering using a single input protease. Furthermore, we demonstrate the compactness of the post-translational design by using polycistronic single transcripts to engineer cells to control protein secretion via lentiviral integration and leverage mRNA delivery to selectively express cell surface proteins only in engineered cells harboring inducible proteases. CompRELEASE enables complex control of protein secretion and enhances the potential of synthetic protein circuits for therapeutic applications, while minimizing the overall genetic payload.

4.
Opt Express ; 31(20): 33200-33211, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859105

RESUMEN

In recent years, the transmission capacity of chaotic secure communications has been greatly expanded by combining coherent detection and multi-dimensional multiplexing. However, demonstrations over 1000 km fiber are yet to be further explored. In this paper, we propose a coherent optical secure transmission system based on analog-digital hybrid chaos. By introducing an analog-digital converter (ADC) and a bit extraction into the feedback loop of entropy source, the broadband analog chaos is converted into a binary digital signal. This binary digital signal is then mapped to a 65536-level pulse amplitude modulation (PAM) signal and injected into the semiconductor laser (SL) to regenerate the analog chaos, forming a closed loop. The binary digital signal from the chaos source and the encrypted signal are transmitted via wavelength division multiplexing (WDM). By using conventional digital signal processing (DSP) algorithms and neural networks for post-compensation, long-haul high-quality chaotic synchronization and high-performance secure communication are achieved. In addition, the probability density distribution of the analog chaotic signal is effectively improved by adopting the additional higher-order mapping operation in the digital part of the chaos source. The proof-of-concept experimental results show that our proposed scheme can support the secure transmission of 100 Gb/s quadrature phase shift keying (QPSK) signals over 1000 km of standard single-mode fiber (SSMF). The decrypted bit error rate (BER) reaches 9.88 × 10-4, which is well below the 7% forward error correction (FEC) threshold (BER = 3.8 × 10-3). This research provides a potential solution for high-capacity long-haul chaotic optical communications and fills the gap in secure communications based on analog-digital hybrid chaos.

5.
Opt Lett ; 48(13): 3547-3550, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390177

RESUMEN

Secure key distribution (SKD) schemes based on the interaction between a broadband chaotic source and the reciprocity of a fiber channel exhibit reliable security and a high key generation rate (KGR). However, under the intensity modulation and direct detection (IM/DD) architecture, these SKD schemes cannot achieve a long distribution distance due to the limitations on the signal-to-noise ratio (SNR) and the receiver's sensitivity. Here, based on the advantage of the high sensitivity of coherent reception, we design a coherent-SKD structure where orthogonal polarization states are locally modulated by a broadband chaotic signal and the single-frequency local oscillator (LO) light is transmitted bidirectionally in the optical fiber. The proposed structure not only utilizes the polarization reciprocity of optical fiber but also largely eliminates the non-reciprocity factor, which can effectively extend the distribution distance. The experiment realized an error-free SKD with a transmission distance of 50 km and a KGR of 1.85 Gbit/s.


Asunto(s)
Fibras Ópticas , Relación Señal-Ruido
6.
Cell Metab ; 35(5): 742-757.e10, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37040763

RESUMEN

Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH. Here, we report that the tripeptide DT-109 (Gly-Gly-Leu) dose-dependently attenuates steatohepatitis and fibrosis in mice. To enhance the probability of successful translation, we developed a nonhuman primate model that histologically and transcriptionally mimics human NASH. Applying a multiomics approach combining transcriptomics, proteomics, metabolomics, and metagenomics, we found that DT-109 reverses hepatic steatosis and prevents fibrosis progression in nonhuman primates, not only by stimulating fatty acid degradation and glutathione formation, as found in mice, but also by modulating microbial bile acid metabolism. Our studies describe a highly translatable NASH model and highlight the need for clinical evaluation of DT-109.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Fibrosis , Metabolismo de los Lípidos , Primates
7.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982679

RESUMEN

The water lily (Nymphaea tetragona) is an ancient angiosperm that belongs to the Nymphaeaceae family. As a rooted floating-leaf plant, water lilies are generally cultivated in fresh water, therefore, little is known about their survival strategies under salt stress. Long-term salt stress causes morphological changes, such as the rapid regeneration of floating leaves and a significant decrease in leaf number and surface area. We demonstrate that salt stress induces toxicity soon after treatment, but plants can adapt by regenerating floating leaves that are photosynthetically active. Transcriptome profiling revealed that ion binding was one of the most-enriched GO terms in leaf-petiole systems under salt stress. Sodium-transporter-related genes were downregulated, whereas K+ transporter genes were both up- and downregulated. These results suggest that restricting intracellular Na+ importing while maintaining balanced K+ homeostasis is an adaptive strategy for tolerating long-term salt stress. ICP-MS analysis identified the petioles and leaves as Na-hyperaccumulators, with a maximum content of over 80 g kg-1 DW under salt stress. Mapping of the Na-hyperaccumulation trait onto the phylogenetic relationships revealed that water lily plants might have a long evolutionary history from ancient marine plants, or may have undergone historical ecological events from salt to fresh water. Ammonium transporter genes involved in nitrogen metabolism were downregulated, whereas NO3--related transporters were upregulated in both the leaves and petioles, suggesting a selective bias toward NO3- uptake under salt stress. The morphological changes we observed may be due to the reduced expression of genes related to auxin signal transduction. In conclusion, the floating leaves and submerged petioles of the water lily use a series of adaptive strategies to survive salt stress. These include the absorption and transport of ions and nutrients from the surrounding environments, and the ability to hyperaccumulate Na+. These adaptations may serve as the physiological basis for salt tolerance in water lily plants.


Asunto(s)
Nymphaea , Filogenia , Estrés Salino , Hojas de la Planta/metabolismo , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
8.
Medicine (Baltimore) ; 102(11): e33173, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36930065

RESUMEN

BACKGROUND: Threatened abortions are a serious health risk for women. Deferiprone tablets are commonly used in the treatment of clinical delivery. Traditional Chinese medicine, a characteristic medical system inherited for thousands of years, often applies Shoutai pills in the treatment of Threatened abortion and has achieved good results. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of Shoutai pills combined with dedrogesterone tablets for the treatment of early preterm abortion. METHODS: Electronic searches of clinical randomized controlled trials in PubMed, Web of Science, MEDLINE, EMBASE, China National Knowledge Infrastructure, Wanfang database, and China Scientific Journal Database (VIP) were conducted. References to the included literature, gray literature in Open Grey, and other relevant literature such as clinical studies registered in ClinicalTrials.gov, were also manually searched. Relevant data were extracted, and a meta-analysis was performed using Reviewer Manager 5.4. RESULTS: The results of this study will be submitted to peer-reviewed journals. CONCLUSION: This study provides high-quality evidence on the efficacy and safety of Shoutai pills in combination with dedrogesterone tablets for the treatment of preterm abortion.


Asunto(s)
Amenaza de Aborto , Medicamentos Herbarios Chinos , Recién Nacido , Humanos , Femenino , Amenaza de Aborto/tratamiento farmacológico , Revisiones Sistemáticas como Asunto , Metaanálisis como Asunto , Medicina Tradicional China/métodos , Proyectos de Investigación , Medicamentos Herbarios Chinos/efectos adversos , Resultado del Tratamiento
10.
Nat Biotechnol ; 41(4): 482-487, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198772

RESUMEN

With the increasing availability of single-cell transcriptomes, RNA signatures offer a promising basis for targeting living cells. Molecular RNA sensors would enable the study of and therapeutic interventions for specific cell types/states in diverse contexts, particularly in human patients and non-model organisms. Here we describe a modular, programmable system for live RNA sensing using adenosine deaminases acting on RNA (RADAR). We validate, and then expand, our basic design, characterize its performance, and analyze its compatibility with human and mouse transcriptomes. We identify strategies to boost output levels and improve the dynamic range. Additionally, we show that RADAR enables compact AND logic. In addition to responding to transcript levels, RADAR can distinguish disease-relevant sequence alterations of transcript identities, such as point mutations and fusions. Finally, we demonstrate that RADAR is a self-contained system with the potential to function in diverse organisms.


Asunto(s)
Edición de ARN , ARN , Animales , Humanos , Ratones , ARN/genética , Edición de ARN/genética , Adenosina Desaminasa/metabolismo , Supervivencia Celular
11.
Front Immunol ; 13: 943667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081510

RESUMEN

Bacillus Calmette-Guérin (BCG) is a licensed prophylactic vaccine against tuberculosis (TB). Current TB vaccine efforts focus on improving BCG effects through recombination or genetic attenuation and/or boost with different vaccines. Recent years, it was revealed that BCG could elicit non-specific heterogeneous protection against other pathogens such as viruses through a process termed trained immunity. Previously, we constructed a recombinant BCG (rBCG-DisA) with elevated c-di-AMP as endogenous adjuvant by overexpressing di-adenylate cyclase of Mycobacterium tuberculosis DisA, and found that rBCG-DisA induced enhanced immune responses by subcutaneous route in mice after M. tuberculosis infection. In this study, splenocytes from rBCG-DisA immunized mice by intravenous route (i.v) elicited greater proinflammatory cytokine responses to homologous and heterologous re-stimulations than BCG. After M. tuberculosis infection, rBCG-DisA immunized mice showed hallmark responses of trained immunity including potent proinflammatory cytokine responses, enhanced epigenetic changes, altered lncRNA expressions and metabolic rewiring in bone marrow cells and other tissues. Moreover, rBCG-DisA immunization induced higher levels of antibodies and T cells responses in the lung and spleen of mice after M. tuberculosis infection. It was found that rBCG-DisA resided longer than BCG in the lung of M. tuberculosis infected mice implying prolonged duration of vaccine efficacy. Then, we found that rBCG-DisA boosting could prolong survival of BCG-primed mice over 90 weeks against M. tuberculosis infection. Our findings provided in vivo experimental evidence that rBCG-DisA with c-di-AMP as endogenous adjuvant induced enhanced trained immunity and adaptive immunity. What's more, rBCG-DisA showed promising potential in prime-boost strategy against M. tuberculosis infection in adults.


Asunto(s)
AMP Cíclico , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Ganglionar , Aciltransferasas/genética , Adenosina Monofosfato , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Animales , Antígenos Bacterianos , Vacuna BCG , AMP Cíclico/química , Citocinas/metabolismo , Fosfatos de Dinucleósidos , Ratones , Ratones Endogámicos C57BL , Vacunas Sintéticas
12.
Nat Commun ; 13(1): 912, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177637

RESUMEN

To program intercellular communication for biomedicine, it is crucial to regulate the secretion and surface display of signaling proteins. If such regulations are at the protein level, there are additional advantages, including compact delivery and direct interactions with endogenous signaling pathways. Here we create a modular, generalizable design called Retained Endoplasmic Cleavable Secretion (RELEASE), with engineered proteins retained in the endoplasmic reticulum and displayed/secreted in response to specific proteases. The design allows functional regulation of multiple synthetic and natural proteins by synthetic protease circuits to realize diverse signal processing capabilities, including logic operation and threshold tuning. By linking RELEASE to additional sensing and processing circuits, we can achieve elevated protein secretion in response to "undruggable" oncogene KRAS mutants. RELEASE should enable the local, programmable delivery of intercellular cues for a broad variety of fields such as neurobiology, cancer immunotherapy and cell transplantation.


Asunto(s)
Péptido Hidrolasas/metabolismo , Transporte de Proteínas , Biología Sintética/métodos , Citometría de Flujo , Células HEK293 , Humanos , Mutación , Péptido Hidrolasas/genética , Ingeniería de Proteínas/métodos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/genética
13.
Foods ; 10(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34828908

RESUMEN

In this study, two polysaccharides [sodium alginate (ALG) and sodium carboxymethyl cellulose (CMC)] were selected to establish zein/sophorolipid/ALG (ALG/S/Z) and zein/sophorolipid/ALG (CMC/S/Z) nanoparticles to encapsulate 7,8-dihydroxyflavone (7,8-DHF), respectively. The results showed that polysaccharide types significantly affected performance of ternary nanoparticles, including CMC/S/Z possessed lower polydispersity index, particle size and turbidity, but higher zeta potential, encapsulation efficiency and loading capacity compared to ALG/S/Z. Compared to zein/sophorolipid nanoparticles (S/Z), both ALG/S/Z and CMC/S/Z had better stability against low pH (pH 3~4) and high ionic strengths (150~200 mM NaCl). Hydrophobic effects, electrostatic interactions and hydrogen bonding were confirmed in ternary nanoparticles fabrication via Fourier-transform infrared spectroscopy. Circular dichroism revealed that CMC and ALG had no evident impact on secondary structure of zein in S/Z, but changed surface morphology of S/Z as observed by scanning electron microscope. Encapsulated 7,8-DHF exhibited an amorphous state in ternary nanoparticles as detected by X-ray diffraction and differential scanning calorimetry. Furthermore, compared to S/Z, ALG/S/Z, and CMC/S/Z remarkably improved the storage stability and bioaccessibility of 7,8-DHF. CMC/S/Z possessed a greater storage stability for 7,8-DHF, however, ALG/S/Z exhibited a better in vitro bioaccessibility of 7,8-DHF. This research provides a theoretical reference for zein-based delivery system application.

14.
Front Physiol ; 12: 699578, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526909

RESUMEN

Increasing energy expenditure by promoting "browning" in adipose tissues is a promising strategy to prevent obesity and associated diabetes. To uncover potential targets of cold exposure, which induces energy expenditure, we performed phosphoproteomics profiling in brown adipose tissue of mice housed in mild cold environment at 16°C. We identified CDC2-like kinase 1 (CLK1) as one of the kinases that were significantly downregulated by mild cold exposure. In addition, genetic knockout of CLK1 or chemical inhibition in mice ameliorated diet-induced obesity and insulin resistance at 22°C. Through proteomics, we uncovered thyroid hormone receptor-associated protein 3 (THRAP3) as an interacting partner of CLK1, further confirmed by co-immunoprecipitation assays. We further demonstrated that CLK1 phosphorylates THRAP3 at Ser243, which is required for its regulatory interaction with phosphorylated peroxisome proliferator-activated receptor gamma (PPARγ), resulting in impaired adipose tissue browning and insulin sensitivity. These data suggest that CLK1 plays a critical role in controlling energy expenditure through the CLK1-THRAP3-PPARγ axis.

15.
Scand J Clin Lab Invest ; 81(7): 564-572, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34570657

RESUMEN

BACKGROUND: Accurate diagnosis of pheochromocytoma and paraganglioma (PPGLs) is highly dependent on the detection of metanephrines and catecholamines. However, the systematic investigation on influencing factors including specimen (plasma or whole blood), anticoagulant, storage conditions, and interference factors need further confirmation. METHODS: Blood with heparin-lithium or EDTA-K2 were collected, stability of epinephrine (EPI), norepinephrine (NE), dopamine (DA), metanephrine (MN), normetanephrine (NMN), 3-methoxytyramine (3-MT) in whole blood and plasma at room temperature and 4 °C for different storage times, stability of plasma MN, NMN and 3-MT at -20 °C and -80 °C were investigated. Plasma with hemoglobin (1 g/L, 2 g/L, 3 g/L, 4 g/L, 6 g/L), TG (<5 mmol/L, 5-8 mmol/L, >8 mmol/L) were prepared. RESULTS: EPI, NE, DA were prone to degrade at room temperature, samples should be centrifuged at 4 °C. EPI and NE were stable in whole blood at 4 °C for 4 h and in plasma for 2 h. For MN, NMN, 3-MT, plasma can be stable at room temperature and 4 °C for at least 6 h, which is better than whole blood; there was no significant difference when stored at -20 °C and -80 °C for 7 days. Heparin-lithium had a slight advantage over EDTA-K2. EPI, NE, DA should not be performed when Hb > 1 g/L or TG > 5 mmol/L. MN, NMN, 3-MT should not be performed when Hb > 2 g/L, whereas TG had no interference. CONCLUSIONS: According to the actual clinical application scenario, this study provided a reliable basis for the accurate diagnosis of PPGLs.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/diagnóstico , Catecolaminas/sangre , Dopamina/análogos & derivados , Metanefrina/sangre , Paraganglioma/diagnóstico , Feocromocitoma/diagnóstico , Neoplasias de las Glándulas Suprarrenales/sangre , Anticoagulantes/farmacología , Dopamina/sangre , Epinefrina/sangre , Hemoglobinas/análisis , Humanos , Metaboloma , Norepinefrina/sangre , Normetanefrina/sangre , Paraganglioma/sangre , Feocromocitoma/sangre , Triglicéridos/sangre
16.
Opt Express ; 29(5): 7904-7915, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726282

RESUMEN

We propose a model-free time delay signature (TDS) extraction method for optical chaos systems. The TDS can be identified from time series without prior knowledge of the actual physical processes. In optical chaos secure communication systems, the chaos carrier is usually generated by a laser diode subject to opto-electronic/all-optical time delayed feedback. One of the most important factors to security considerations is the concealment of the TDS. So far, statistical analysis methods such as autocorrelation function (ACF) and delayed mutual information (DMI) are usually used to unveil the TDS. However, the effectiveness of these methods will be reduced when increasing the nonlinearity of chaos systems. Meanwhile, certain TDS concealment strategies have been designed against statistical analysis. In our previous work, convolutional neural network shows its effectiveness on TDS extraction of chaos systems with high loop nonlinearity. However, this method relies on the knowledge of detailed structure of the chaos systems. In this work, we formulate a blind identification method based on long short-term memory neural network (LSTM-NN) model. The method is validated against the two major types of optical chaos systems, i.e. opto-electronic oscillator (OEO) chaos system and laser chaos system based on internal nonlinearity. Moreover, some security enhanced chaotic systems are also studied. The results show that the proposed method has high tolerance to additive noise. Meanwhile, the data amount needed is less than existing methods.

17.
Virology ; 556: 33-38, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545554

RESUMEN

Five-week-old male BALB/c mice were inoculated intraperitoneally with a single (sP1) or multiple doses (mP1) of porcine circovirus-like virus P1 or cell culture medium. None of the mice exhibited clinical signs or gross lesions throughout the study. However, the body weights of the mP1 mice were significantly decreased, and the mice inoculated with P1 exhibited viral replication, seroconversion, and microscopic lesions. P1 nucleic acid was detected in the heart, liver, spleen, lung, bladder, testis, brain, thymus, and pancreatic tissues. Special P1 antibody was found in the P1-inoculated mice. Microscopic lesions in the sP1 and mP1 mice were characterized by interstitial pneumonia, including edema in the connective tissue around the pulmonary vessels, mild inflammatory cell infiltrate, thickened alveolar walls, myocardial necrosis, and dissolution of Purkinje cell nuclei. The results showed that the P1 virus could infect BALB/c mice. Thus, BALB/c mice may serve as models for P1 research.


Asunto(s)
Infecciones por Circoviridae/virología , Circovirus , Animales , Circovirus/crecimiento & desarrollo , Circovirus/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Replicación Viral
18.
Front Nutr ; 8: 806623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047548

RESUMEN

In this work, the lactoferrin (LF) was glycosylated by dextran (molecular weight 10, 40, and 70 kDa, LF 10K, LF 40K, and LF 70K) via Maillard reaction as a stabilizer to establish zein/glycosylated LF nanoparticles and encapsulate 7,8-dihydroxyflavone (7,8-DHF). Three zein/glycosylated LF nanoparticles (79.27-87.24 nm) with low turbidity (<0.220) and polydispersity index (PDI) (<0.230) were successfully established by hydrophobic interactions and hydrogen bonding. Compared with zein/LF nanoparticles, zein/glycosylated LF nanoparticles further increased stability to ionic strength (0-500 mM NaCl) at low pH conditions. Zein/glycosylated LF nanoparticles had nanoscale spherical shape and glycosylated LF changed surface morphology of zein nanoparticles. Besides, encapsulated 7,8-DHF exhibited an amorphous state inside zein/glycosylated LF nanoparticles. Most importantly, zein/glycosylated LF nanoparticles had good water redispersibility, high encapsulation efficiency (above 98.50%), favorable storage stability, and bioaccessibility for 7,8-DHF, particularly LF 40K. Collectively, the above research provides a theoretical reference for the application of zein-based delivery systems.

19.
Anal Chem ; 92(13): 8943-8951, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32479063

RESUMEN

Although a multiple-protease based shotgun proteomics method was shown to improve coverage for phosphosite identification, this traditional pipeline is time-consuming and can be of low reproducibility. Here, we demonstrated a multi-in-one strategy to saturate the phosphosite coverage by combining the multiple-proteases based digestion, one-step enrichment, and one-shot data-independent acquisition (DIA) as short as 1 h. In the "three-in-one" workflow, more than 19,700 and 13,500 phosphosites could be identified in the trypsin-like and nontrypsin-like mixture, respectively. By combining and applying our "three-in-one" strategy, nearly 30,000 phosphosites could be successfully quantified with high reproducibility across samples. Meanwhile, we developed a faster and more robust method, in which over a single 66 min chromatographic method by "six-in-one" strategy, 19,445 phosphosites could be successfully localized, drastically reducing the database search time required in the traditional method. Inspiringly, this strategy further enabled us to discover 2,675 phosphorylation events on the low abundant transcription factors (TFs) in living cells with high coverage. More broadly, the multi-in-one strategy makes the multiple-protease digestion in large-scale analysis applicable, with low time-consuming, high sensitivity, improved coverage, and high reproducibility.


Asunto(s)
Péptido Hidrolasas/metabolismo , Fosfopéptidos/análisis , Proteómica/métodos , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Ratones , Fosfopéptidos/metabolismo , Fosforilación , Espectrometría de Masas en Tándem , Factores de Transcripción/metabolismo
20.
Opt Express ; 28(10): 15221-15231, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403553

RESUMEN

We propose a time delay signature extraction method for optical chaos systems based on a convolutional neural network. Through transforming the time delay signature of a one-dimensional time series into two-dimensional image features, the excellent ability of convolutional neural networks for image feature recognition is fully utilized. The effectiveness of the method is verified on chaos systems with opto-electronic feedback and all optical feedback. The recognition accuracy of the method is 100% under normal conditions. For the system with extremely strong nonlinearity, the accuracy can be 93.25%, and the amount of data required is less than traditional methods. Moreover, it is verified that the proposed method possesses a strong ability to withstand the effects of noise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA