Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0420223, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874428

RESUMEN

The underlying mechanism of thermotolerance, which is a key virulence factor essential for pathogenic fungi such as Cryptococcus neoformans, is largely unexplored. In this study, our findings suggest that Set302, a homolog of Set3 and a subunit of histone deacetylase complex Set3C, contributes to thermotolerance in C. neoformans. Specifically, the deletion of the predicted Set3C core subunit, Set302, resulted in further reduction in the growth of C. neoformans at 39°C, and survival of transient incubation at 50°C. Transcriptomics analysis revealed that the expression levels of numerous heat stress-responsive genes altered at both 30°C and 39°C due to the lack of Set302. Notably, at 39°C, the absence of Set302 led to the downregulation of gene expression related to the ubiquitin-proteasome system (UPS). Based on the GFP-α-synuclein overexpression model to characterize misfolded proteins, we observed a pronounced accumulation of misfolded GFP-α-synuclein at 39°C, consequently inhibiting C. neoformans thermotolerance. Furthermore, the loss of Set302 exacerbated the accumulation of misfolded GFP-α-synuclein during heat stress. Interestingly, the set302∆ strain exhibited a similar phenotype under proteasome stress as it did at 39°C. Moreover, the absence of Set302 led to reduced production of capsule and melanin. set302∆ strain also displayed significantly reduced pathogenicity and colonization ability compared to the wild-type strain in the murine infection model. Collectively, our findings suggest that Set302 modulates thermotolerance by affecting the degradation of misfolded proteins and multiple virulence factors to mediate the pathogenicity of C. neoformans.IMPORTANCECryptococcus neoformans is a pathogenic fungus that poses a potential and significant threat to public health. Thermotolerance plays a crucial role in the wide distribution in natural environments and host colonization of this fungus. Herein, Set302, a critical core subunit for the integrity of histone deacetylase complex Set3C and widely distributed in various fungi and mammals, governs thermotolerance and affects survival at extreme temperatures as well as the formation of capsule and melanin in C. neoformans. Additionally, Set302 participates in regulating the expression of multiple genes associated with the ubiquitin-proteasome system (UPS). By eliminating misfolded proteins under heat stress, Set302 significantly contributes to the thermotolerance of C. neoformans. Moreover, Set302 regulates the pathogenicity and colonization ability of C. neoformans in a murine model. Overall, this study provides new insight into the mechanism of thermotolerance in C. neoformans.

2.
Elife ; 132024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38251723

RESUMEN

Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Proteínas de Saccharomyces cerevisiae , Humanos , Cromatina , Cryptococcus neoformans/genética , Saccharomyces cerevisiae/genética , Acetilación , Conducta Imitativa , Adenosina Trifosfatasas/metabolismo , Ubiquitinación , Resistencia a Múltiples Medicamentos , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Emerg Microbes Infect ; 12(2): 2244087, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37526401

RESUMEN

Systemic infection with Cryptococcus neoformans, a dangerous and contagious pathogen found throughout the world, frequently results in lethal cryptococcal pneumonia and meningoencephalitis, and no effective treatments and vaccination of cryptococcosis are available. Here, we describe Prm1, a novel regulator of C. neoformans virulence. C. neoformans prm1Δ cells exhibit extreme sensitivity to various environmental stress conditions. Furthermore, prm1Δ cells show deficiencies in the biosynthesis of chitosan and mannoprotein, which in turn result in impairment of cell wall integrity. Treatment of mice with heat-killed prm1Δ cells was found to facilitate the host immunological defence against infection with wild-type C. neoformans. Further investigation demonstrated that prm1Δ cells strongly promote pulmonary production of interferon-γ, leading to activation of macrophage M1 differentiation and inhibition of M2 polarization. Therefore, our findings suggest that C. neoformans Prm1 may be a viable target for the development of anti-cryptococcosis medications and, cells lacking Prm1 represent a promising candidate for a vaccine.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Animales , Ratones , Calor , Criptococosis/prevención & control , Cryptococcus neoformans/genética , Vacunación , Inmunización
4.
Nat Commun ; 13(1): 5407, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109512

RESUMEN

Mitochondrial quality control prevents accumulation of intramitochondrial-derived reactive oxygen species (mtROS), thereby protecting cells against DNA damage, genome instability, and programmed cell death. However, underlying mechanisms are incompletely understood, particularly in fungal species. Here, we show that Cryptococcus neoformans heat shock factor 3 (CnHsf3) exhibits an atypical function in regulating mtROS independent of the unfolded protein response. CnHsf3 acts in nuclei and mitochondria, and nuclear- and mitochondrial-targeting signals are required for its organelle-specific functions. It represses the expression of genes involved in the tricarboxylic acid cycle while promoting expression of genes involved in electron transfer chain. In addition, CnHsf3 responds to multiple intramitochondrial stresses; this response is mediated by oxidation of the cysteine residue on its DNA binding domain, which enhances DNA binding. Our results reveal a function of HSF proteins in regulating mtROS homeostasis that is independent of the unfolded protein response.


Asunto(s)
Cryptococcus neoformans , Cisteína , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cisteína/metabolismo , ADN/metabolismo , Homeostasis , Mitocondrias/genética , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Emerg Microbes Infect ; 11(1): 1572-1585, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35621025

RESUMEN

Cryptococcal meningoencephalitis (CM) is emerging as an infection in HIV/AIDS patients shifted from primarily ART-naive to ART-experienced individuals, as well as patients with COVID-19 and immunocompetent hosts. This fungal infection is mainly caused by the opportunistic human pathogen Cryptococcus neoformans. Brain or central nervous system (CNS) dissemination is the deadliest process for this disease; however, mechanisms underlying this process have yet to be elucidated. Moreover, illustrations of clinically relevant responses in cryptococcosis are currently limited due to the low availability of clinical samples. In this study, to explore the clinically relevant responses during C. neoformans infection, macaque and mouse infection models were employed and miRNA-mRNA transcriptomes were performed and combined, which revealed cytoskeleton, a major feature of HIV/AIDS patients, was a centric pathway regulated in both infection models. Notably, assays of clinical immune cells confirmed an enhanced macrophage "Trojan Horse" in patients with HIV/AIDS, which could be shut down by cytoskeleton inhibitors. Furthermore, myocilin, encoded by MYOC, was found to be a novel enhancer for the macrophage "Trojan Horse," and an enhanced fungal burden was achieved in the brains of MYOC-transgenic mice. Taken together, the findings from this study reveal fundamental roles of the cytoskeleton and MYOC in fungal CNS dissemination, which not only helps to understand the high prevalence of CM in HIV/AIDS but also facilitates the development of novel therapeutics for meningoencephalitis caused by C. neoformans and other pathogenic microorganisms.


Asunto(s)
COVID-19 , Criptococosis , Cryptococcus neoformans , Infecciones por VIH , Meningoencefalitis , MicroARNs , Animales , Encéfalo/patología , Criptococosis/microbiología , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Humanos , Macaca , Meningoencefalitis/microbiología , Ratones , MicroARNs/genética , Transcriptoma
6.
Redox Biol ; 38: 101795, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232911

RESUMEN

The formation of α-synuclein aggregates is a major pathological hallmark of Parkinson's disease. Copper promotes α-synuclein aggregation and toxicity in vitro. The level of copper and copper transporter 1, which is the only known high-affinity copper importer in the brain, decreases in the substantia nigra of Parkinson's disease patients. However, the relationship between copper, copper transporter 1 and α-synuclein pathology remains elusive. Here, we aim to decipher the molecular mechanisms of copper and copper transporter 1 underlying Parkinson's disease pathology. We employed yeast and mammalian cell models expressing human α-synuclein, where exogenous copper accelerated intracellular α-synuclein inclusions and silencing copper transporter 1 reduced α-synuclein aggregates in vitro, suggesting that copper transporter 1 might inhibit α-synuclein pathology. To study our hypothesis in vivo, we generated a new transgenic mouse model with copper transporter 1 conditional knocked-out specifically in dopaminergic neuron. Meanwhile, we unilaterally injected adeno-associated viral human-α-synuclein into the substantia nigra of these mice. Importantly, we found that copper transporter 1 deficiency significantly reduced S129-phosphorylation of α-synuclein, prevented dopaminergic neuronal loss, and alleviated motor dysfunction caused by α-synuclein overexpression in vivo. Overall, our data indicated that inhibition of copper transporter 1 alleviated α-synuclein mediated pathologies and provided a novel therapeutic strategy for Parkinson's disease and other synucleinopathies.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Transportador de Cobre 1 , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
Commun Biol ; 2: 154, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069264

RESUMEN

Lysine acetylation is critical in regulating important biological processes in many organisms, yet little is known about acetylome evolution and its contribution to phenotypic diversity. Here, we compare the acetylomes of baker's yeast and the three deadliest human fungal pathogens, Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus. Using mass spectrometry enriched for acetylated peptides together with public data from Saccharomyces cerevisiae, we show that fungal acetylomes are characterized by dramatic evolutionary dynamics and limited conservation in core biological processes. Notably, the levels of protein acetylation in pathogenic fungi correlate with their pathogenicity. Using gene knockouts and pathogenicity assays in mice, we identify deacetylases with critical roles in virulence and protein translation elongation. Finally, through mutational analysis of deactylation motifs we find evidence of positive selection at specific acetylation motifs in fungal pathogens. These results shed new light on the pathogenicity regulation mechanisms underlying the evolution of fungal acetylomes.


Asunto(s)
Amidohidrolasas/genética , Criptococosis/microbiología , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/genética , Procesamiento Proteico-Postraduccional , Acetilación , Amidohidrolasas/metabolismo , Animales , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidad , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/patogenicidad , Criptococosis/mortalidad , Criptococosis/patología , Cryptococcus neoformans/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Extensión de la Cadena Peptídica de Translación , Péptidos/genética , Péptidos/metabolismo , Proteómica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de Supervivencia , Virulencia
8.
Microbiologyopen ; 7(3): e00564, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29243387

RESUMEN

Cryptococcus neoformans is an important opportunistic fungal pathogen in humans. Recent studies have demonstrated that metals are critical factors for the regulation of fungal virulence in hosts. In this study, we systemically investigated the function of C. neoformans magnesium transporters in controlling the intracellular Mg balance and virulence-associated factors. We identified three Mg transporters in C. neoformans: Mgt1, Mgt2, and Mgt3. While we could not detect a Mg2+ -related growth phenotype in mgt1 and mgt3 knockout strains, a GAL7p-Mgt2 strain showed significant Mg-dependent growth defects in the presence of glucose. Further analysis demonstrated that MGT2 is a homolog of MNR2 in Saccharomyces cerevisiae, which is localized to the vacuolar membrane and participates in intracellular Mg transport. Interestingly, a transcriptome analysis showed that Mgt2 influenced the expression of 19 genes, which were independent of Mg2+ . We showed that melanin synthesis in C. neoformans required Mg2+ and Mgt2, and that capsule production was negatively regulated by Mg2+ and Mgt2. Repressing the expression of MGT2-induced capsule, which resulted in an increased fungal burden in the lungs. Cumulatively, this study sets the stage for further evaluation of the important role of Mg homeostasis in the regulation of melanin and capsule in C. neoformans.


Asunto(s)
Cryptococcus neoformans/enzimología , Regulación Fúngica de la Expresión Génica , Magnesio/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Vacuolas/enzimología , Vacuolas/metabolismo , Factores de Virulencia/metabolismo , Proteínas de Transporte de Catión/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia , Vacuolas/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA