Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transl Cancer Res ; 13(5): 2108-2121, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881926

RESUMEN

Background: Breast cancer is a major public health concern. Proteomics enables identification of proteins with aberrant properties. Here, we identified proteins with abnormal expression levels in breast cancer tissues and systematically analyzed and validated the data to locate potential diagnostic and therapeutic targets. Methods: Protein expression level in breast cancer tissues and para-carcinoma tissues were detected by Isobaric Tags for Relative and Absolute Quantification (iTRAQ) technology and further screened through Gene Expression Profiling Interactive Analysis (GEPIA) database. Cellular components, protein domain and Reactome pathway analysis were performed to screen functional targets. Abnormal expression levels of functional targets were validated by Oncomine database, quantitative real time polymerase chain reaction (qRT-PCR) and proteomics detection. Protein correlation analysis was performed to explain the abnormal expression levels of potential targets in breast cancer. Results: Overall, 207 and 207 proteins were up- and down-regulated, respectively, in breast cancer tissues, and approximately 50% were also detected in the GEPIA database. The overlapping proteins were mainly extracellular proteins containing epidermal growth factor-like domain in leukocyte adhesion molecule (EGF-Lam) domain and enriched in laminin interaction pathway. Moreover, the downregulated laminin interaction proteins could be functional targets, which were also validated through Oncomine-Richardson and Oncomine-Curtis database. However, the lower expression level of laminin interaction proteins only fit for luminal breast cancer cells with no or low metastasis ability because the proteins achieved higher expression level in more invasive claudin-low breast cancer cells. In addition, when compared with corresponding in situ carcinoma tissues, above-mentioned proteins also showed higher expression levels in invasive carcinoma tissues. Finally, we have revealed the negative correlation between the laminin interaction proteins and the claudins. Conclusions: The laminin interaction protein, especially for laminins with ß1 and γ1 subunits and their integrin receptors with α1 and α6 subunits, showed lower expression levels in luminal breast cancer with no or lower metastatic ability, but showed higher expression levels in claudin-low breast cancer with higher metastatic ability; and their higher expression could be related to the low claudin expression.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38936270

RESUMEN

BACKGROUND: Due to the close correlation between choline, L-carnitine, betaine and their intestinal microbial metabolites, including trimethylamine (TMA) and trimethylamine N-oxide (TMAO), and creatinine, there has been an increasing interest in the study of these compounds in vivo. METHODS: In this study, a rapid stable isotope dilution (SID)-UHPLC-MS/MS method was developed for the simultaneous determination of choline, L-carnitine, betaine, TMA, TMAO and creatinine in plasma, liver and feces of rats. The method was validated using quality control (QC) samples spiked at low, medium and high levels. Second, we applied the method to quantify the effects of Rosa Roxburghii Tratt juice (RRTJ) on plasma, liver, and fecal levels of choline, L-carnitine, betaine, TMA, TMAO, and creatinine in high-fat diet-induced hyperlipidemic rats, demonstrating the utility of the method. RESULTS: The limits of detection (LOD) were 0.04-0.027 µM and the limits of quantification (LOQ) were 0.009-0.094 µM. The linear ranges for each metabolite in plasma were choline1.50-96 µM; L-carnitine: 2-128 µM; betaine: 3-192 µM; TMA: 0.01-40.96 µM; TMAO: 0.06-61.44 µM and creatinine: 1-64 µM (R2 ≥ 0.9954). The linear ranges for each metabolite in liver were Choline: 12-768 µM; L-carnitine: 1.5-96 µM; betaine: 10-640 µM; TMA: 0.5-32 µM; TMAO: 0.02-81.92 µM and creatinine: 0.2-204.8 µM (R2 ≥ 0.9938). The linear ranges for each metabolite in feces were choline: 1.5-96 µM; L-carnitine: 0.01-40.96 µM; Betaine: 1.5-96 µM; TMA: 1-64 µM; TMAO: 0.02-81.92 µM and Creatinine: 0.02-81.92 µM (R2 ≥ 0.998). The intra-day and inter-day coefficients of variation were < 8 % for all analytes. The samples were stabilized after multiple freeze-thaw cycles (3 freeze-thaw cycles), 24 h at room temperature, 24 h at 4 °C and 20 days at -80 °C. The samples were stable. The average recovery was 89 %-99 %. This method was used to quantify TMAO and its related metabolites and creatinine levels in hyperlipidemic rats. The results showed that high-fat diet led to the disorder of TMAO and its related metabolites and creatinine in rats, which was effectively improved after the intervention of Rosa Roxburghii Tratt juice(RRTJ). CONCLUSIONS: A method for the determination of choline, L-carnitine, betaine, TMA, TMAO and creatinine in plasma, liver and feces samples was established, which is simple, time-saving, high precision, accuracy and recovery.

3.
Pharmaceutics ; 16(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38931853

RESUMEN

Pharmaceutical excipient PEG400 is a common component of traditional Chinese medicine compound preparations. Studies have demonstrated that pharmaceutical excipients can directly or indirectly influence the disposition process of active drugs in vivo, thereby affecting the bioavailability of drugs. In order to reveal the pharmacokinetic effect of PEG400 on baicalin in hepatocytes and its mechanism, the present study first started with the effect of PEG400 on the metabolic disposition of baicalin at the hepatocyte level, and then the effect of PEG400 on the protein expression of baicalin-related transporters (BCRP, MRP2, and MRP3) was investigated by using western blot; the effect of MDCKII-BCRP, MDCKII-BCRP, MRP2, and MRP3 was investigated by using MDCKII-BCRP, MDCKII-MRP2, and MDCKII-MRP3 cell monolayer models, and membrane vesicles overexpressing specific transporter proteins (BCRP, MRP2, and MRP3), combined with the exocytosis of transporter-specific inhibitors, were used to study the effects of PEG400 on the transporters in order to explore the possible mechanisms of its action. The results demonstrated that PEG400 significantly influenced the concentration of baicalin in hepatocytes, and the AUC0-t of baicalin increased from 75.96 ± 2.57 µg·h/mL to 106.94 ± 2.22 µg·h/mL, 111.97 ± 3.98 µg·h/mL, and 130.42 ± 5.26 µg·h/mL (p ˂ 0.05). Furthermore, the efflux rate of baicalin was significantly reduced in the vesicular transport assay and the MDCKII cell model transport assay, which indicated that PEG400 had a significant inhibitory effect on the corresponding transporters. In conclusion, PEG400 can improve the bioavailability of baicalin to some extent by affecting the efflux transporters and thus the metabolic disposition of baicalin in the liver.

4.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748024

RESUMEN

Chromones are a class of naturally occurring compounds, renowned for their diverse biological activities with significant relevance in medicine and biochemistry. This study marks the first analysis of rotational spectra of both the chromone monomer and its monohydrate through Fourier transform microwave spectroscopy. The observation of nine mono-substituted 13C isotopologues facilitated a semi-experimental determination of the equilibrium structure of the chromone monomer. In the case of chromone monohydrate, two distinct isomers were identified, each characterized by a combination of O-H⋯O and C-H⋯O hydrogen bonds involving the chromone's carbonyl group. This study further delved into intermolecular non-covalent interactions, employing different theoretical approaches. The relative population ratio of the two identified isomers was estimated to be about 2:1 within the supersonic jet.


Asunto(s)
Cromonas , Cromonas/química , Enlace de Hidrógeno , Conformación Molecular , Análisis Espectral/métodos , Microondas , Estructura Molecular
5.
Nutrients ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732622

RESUMEN

Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Jugos de Frutas y Vegetales , Lipopolisacáridos , Metabolómica , Estrés Oxidativo , Rosa , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/prevención & control , Rosa/química , Metabolómica/métodos , Ratones , Masculino , Estrés Oxidativo/efectos de los fármacos , Farmacología en Red , Fermentación , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Citocinas/metabolismo , Metabolismo Energético/efectos de los fármacos
6.
Front Microbiol ; 15: 1347016, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650869

RESUMEN

Global warming has contributed to shifts in precipitation patterns and increased plant productivity, resulting in a significant increase in litter input into the soils. The enhanced litter input, combined with higher levels of precipitation, may potentially affect soil microbial communities. This study aims to investigate the effects of litter input and increased precipitation on soil microbial biomass, community structure, and diversity in a temperate meadow steppe in northeastern China. Different levels of litter input (0%, +30%, +60%) and increased precipitation (0%, +15%, +30%) were applied over a three-year period (2015-2017). The results showed that litter input significantly increased the biomass of bacteria and fungi without altering their diversity, as well as the ratio of bacterial to fungal biomass. Increased precipitation did not have a notable effect on the biomass and diversity of bacteria and fungi, but it did increase the fungal-to-bacterial biomass ratio. However, when litter input and increased precipitation interacted, bacterial diversity significantly increased while the fungal-to-bacterial biomass ratio remained unchanged. These findings indicate that the projected increases in litter and precipitation would have a substantial impact on soil microbial communities. In energy-and water-limited temperate grasslands, the additional litter inputs and increased precipitation contribute to enhanced nutrient and water availability, which in turn promotes microbial growth and leads to shifts in community structure and diversity.

7.
Microorganisms ; 12(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38399696

RESUMEN

Vulvovaginal candidiasis (VVC) is a common gynecologic disorder caused by fungal infections of the vaginal mucosa, with the most common pathogen being Candida albicans (C. albicans). Exploring metabolite changes in the disease process facilitates further discovery of targets for disease treatment. However, studies on the metabolic changes caused by C. albicans are still lacking. In this study, we used C. albicans-infected vaginal epithelial cells to construct an in vitro model of VVC, analyzed the metabolites by UHPLC-Q-Exactive MS, and screened the potential metabolites based on metabolomics. The results showed that C. albicans infection resulted in significant up-regulation of D-arabitol, palmitic acid, adenosine, etc.; significant down-regulation of lactic acid, nicotinamide (NAM), nicotinate (NA), etc.; and disruption of amino acid metabolism, and that these significantly altered metabolites might be potential therapeutic targets of VVC. Further experiments showed that C. albicans infection led to a decrease in glycolytic enzymes in damaged cells, inhibiting glycolysis and leading to significant alterations in glycolytic metabolites. The present study explored the potential metabolites of VVC induced by C. albicans infection based on metabolomics and verified the inhibitory effect of C. albicans on vaginal epithelial cell glycolysis, which is valuable for the diagnosis and treatment of VVC.

8.
Front Microbiol ; 15: 1351295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282971

RESUMEN

Introduction: Acute lung injury (ALI) is a serious respiratory disease characterized by progressive respiratory failure with high morbidity and mortality. It is becoming increasingly important to develop functional foods from polyphenol-rich medicinal and dietary plants in order to prevent or alleviate ALI by regulating intestinal microflora. Rosa roxburghii Tratt polyphenol (RRTP) has significant preventive and therapeutic effects on lipopolysaccharide-induced ALI mice, but its regulatory effects on gut homeostasis in ALI mice remains unclear. Methods: This study aims to systematically evaluate the ameliorative effects of RRTP from the perspective of "lung-gut axis" on ALI mice by intestine histopathological assessment, oxidative stress indicators detection and short-chain fatty acids (SCFAs) production, and then explore the modulatory mechanisms of RRTP on intestinal homeostasis by metabolomics and gut microbiomics of cecal contents. Results: The results showed that RRTP can synergistically exert anti-ALI efficacy by significantly ameliorating intestinal tissue damage, inhibiting oxidative stress, increasing SCFAs in cecal contents, regulating the composition and structure of intestinal flora, increasing Akkermansia muciniphila and modulating disordered intestinal endogenous metabolites. Discussion: This study demonstrated that RRTP has significant advantages in adjuvant therapy of ALI, and systematically clarified its comprehensive improvement mechanism from a new perspective of "lung-gut axis", which provides a breakthrough for the food and healthcare industries to develop products from botanical functional herbs and foods to prevent or alleviate ALI by regulating intestinal flora.

9.
Otol Neurotol ; 45(2): 154-162, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38152047

RESUMEN

OBJECTIVE: To emphasize the surgical importance of addressing dehiscence over diverticulum in resolving pulsatile tinnitus (PT) in patients with sigmoid sinus wall anomalies (SSWAs) and investigate anatomical differences. STUDY DESIGN: Retrospective data analysis. SETTING: Multi-institutional tertiary university medical centers. PATIENTS: Fifty participants (dehiscence/diverticulum, 29:21 cases) with SSWA-associated PT were included in the study. All 21 diverticulum participants underwent surgical intervention. INTERVENTIONS: 1) Surgical intervention with novel techniques monitored by intraoperative microphone. 2) Radiologic and ophthalmologic imaging methods. MAIN OUTCOME MEASURES: Quantitative and qualitative preoperative and postoperative alterations of PT and anatomical differences between dehiscence and diverticulum. RESULTS: Addressing dehiscence overlying diverticulum and sigmoid sinus wall dehiscences significantly reduced visual analog score and Tinnitus Handicap Inventory ( p < 0.01). Sinus wall reconstruction led to substantial PT sound intensity reduction in the frequency range of 20 to 1000 Hz and 20 to 500 Hz (paired-sample t test, p < 0.01). Diploic vein analysis showed a significant positive correlation in 85.7% of the diverticulum cohort compared with the dehiscence cohort ( p < 0.01). Eight percent of the participants exhibited papilledema, which was limited to the dehiscence cohort. CONCLUSION: 1) Effective reduction of PT can be achieved by addressing all dehiscences, including those overlying the diverticulum, without the need to exclude the diverticulum. 2) Diploic vein may involve in the formation of diverticulum, and loss of dura mater and vascular wall thickness are observed at the SSWA locations.


Asunto(s)
Divertículo , Procedimientos de Cirugía Plástica , Acúfeno , Humanos , Acúfeno/cirugía , Acúfeno/complicaciones , Estudios Retrospectivos , Monitoreo Intraoperatorio , Senos Craneales/cirugía , Divertículo/complicaciones , Divertículo/diagnóstico por imagen , Divertículo/cirugía
10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(9): 1359-1367, 2023.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38044647

RESUMEN

PKM2, also known as M2-type pyruvate kinase, has attracted significant attention due to its crucial role in glycolysis and its abnormal expression in various tumors. With the discovery of PKM2's non-metabolic functions, the transition between its pyruvate kinase activity (in the tetrameric form in the cytoplasm) and protein kinase activity (in the dimeric form in the nucleus) has once again made PKM2 a target of interest in cancer research. Studies have shown that PKM2 is a protein susceptible to various post-translational modifications, and different post-translational modifications play important regulatory roles in processes such as PKM2 cellular localization, structure, and enzyme activity conversion. In this review, we focused on the recent progress of multiple post-translational modifications of PKM2 and their important roles in tumor initiation and development. For example, phosphorylation and acetylation promote nuclear translocation by altering PKM2 cell localization; glycosylation and ubiquitination can promote the formation of dimer structure by affecting the structural transformation of PKM2; succinylation and redox modification promoted the enhancement of PKM2 kinase activity by affecting the transformation of kinase activity. Both changes affect the structure and cell localization of PKM2 and they play a role in promoting or inhibiting tumor development via altering its kinase activity.


Asunto(s)
Neoplasias , Piruvato Quinasa , Humanos , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Neoplasias/patología , Fosforilación , Transformación Celular Neoplásica , Procesamiento Proteico-Postraduccional , Glucólisis
11.
Plants (Basel) ; 12(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960099

RESUMEN

Biodiversity plays a crucial role in driving multiple ecosystem functions in temperate grasslands. However, our understanding of how biodiversity regulates the impacts of desertification processes on ecosystem multifunctionality (EMF) remains limited. In this study, we investigate plant diversity, soil microbial diversity (fungal, bacterial, archaeal, and arbuscular mycorrhizal fungal (AMF) diversity), soil properties (soil water content, pH, and soil clay content), and multiple ecosystem functions (soil N mineralization, soil phosphatase activity, AMF infection rate, microbial biomass, plant biomass, and soil C and nutrients (N, P, K, Ca, Fe, Na, Cu, Mg, and Mn)) at six different grassland desertification intensities. The random forest model was conducted to assess the importance of soil properties, plant diversity, and soil microbial diversity in driving EMF. Furthermore, a structural equation model (SEM) was employed to analyze the indirect and direct impacts of these predictors on EMF. Our study showed that plant, soil bacterial, fungal, and archaeal diversity gradually decreased with increasing desertification intensity. However, only AMF diversity was found to be less sensitive to desertification. Similarly, EMF also showed a significant decline with increasing desertification. Importantly, both plant and soil microbial diversity were positively associated with EMF during desertification processes. The random forest model and SEM revealed that both plant and soil microbial diversity were identified as important and direct predictors of EMF during desertification processes. This highlights the primary influence of above- and below-ground biodiversity in co-regulating the response of EMF to grassland desertification. These findings have important implications for planned ecosystem restoration and sustainable grassland management.

12.
Molecules ; 28(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005284

RESUMEN

Polyethylene glycol 400 (PEG400) is a widely used pharmaceutical excipient in the field of medicine. It not only enhances the dispersion stability of the main drug but also facilitates the absorption of multiple drugs. Our previous study found that the long-term application of PEG400 as an adjuvant in traditional Chinese medicine preparations resulted in wasting and weight loss in animals, which aroused our concern. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity of gut microbiota, and LC-MS/MS Q-Exactive Orbtriap metabolomics technology was used to analyze the effect of PEG400 on the metabolome of healthy mice, combined with intestinal pathological analysis, aiming to investigate the effects of PEG400 on healthy mice. These results showed that PEG400 significantly altered the structure of gut microbiota, reduced the richness and diversity of intestinal flora, greatly increased the abundance of Akkermansia muciniphila (A. muciniphila), increased the proportion of Bacteroidetes to Firmicutes, and reduced the abundance of many beneficial bacteria. Moreover, PEG400 changed the characteristics of fecal metabolome in mice and induced disorders in lipid and energy metabolism, thus leading to diarrhea, weight loss, and intestinal inflammation in mice. Collectively, these findings provide new evidence for the potential effect of PEG400 ingestion on a healthy host.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Excipientes/farmacología , ARN Ribosómico 16S/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metaboloma , Pérdida de Peso
13.
Front Cell Infect Microbiol ; 13: 1166366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780858

RESUMEN

Background: Mixed vaginitis is the infection of the vagina by at least two different pathogens at the same time, both of which contribute to an abnormal vaginal environment leading to signs and symptoms. Baicao Fuyanqing suppository (BCFYQ) is a Miao ethnomedicine, used to treat various vaginitis. The aim of this study was to investigate the efficacy and possible mechanism of BCFYQ in the treatment of mixed vaginitis based on 16S rRNA high-throughput sequencing and metabonomics. Methods: Escherichia coli and Candida albicans were used to establish mixed vaginitis model in SD rats. Three groups of low, medium and high doses (0.18/0.36/0.64 g.kg-1) were established, and administered vaginally once a day for 6 consecutive days. After the last administration, vaginal pH and IL-1ß, IL-2, IL-13 and IgA levels were measured, and the vaginal tissue was examined pathologically. In addition, the vaginal flora was characterised by 16S rRNA, and endogenous metabolites in the vaginal tissue were detected by UHPLC-Q-Exactive MS. Results: Compared with the model group, BCFYQ can reduce the vaginal pH of rats, make it close to the normal group and improve the damaged vaginal epithelial tissue. The results of ELISA showed that BCFYQ decreased the levels of IL-1 ß and IL-2 and increased the levels of IL-13 and IgA (P<0.05). In addition, BCFYQ may increase the abundance of vaginal flora, especially Lactobacillus. The differential metabolite enrichment pathway suggests that the therapeutic mechanism of BCFYQ is mainly related to lipid metabolism and amino acid metabolism. Conclusion: Our research shows that BCFYQ has a good therapeutic effect on mixed vaginitis. It repairs the damaged vaginal mucosa by regulating the vaginal flora and lipid metabolism disorders to improve the local immune function of the vagina and inhibit the growth and reproduction of pathogens.


Asunto(s)
Vaginitis , Vulvovaginitis , Humanos , Femenino , Ratas , Animales , ARN Ribosómico 16S/genética , Interleucina-13 , Interleucina-2 , Ratas Sprague-Dawley , Vaginitis/tratamiento farmacológico , Vagina , Inmunoglobulina A
14.
Heliyon ; 9(9): e19949, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810141

RESUMEN

Qijiao Shengbai capsule (QJSB) is formulated according to the traditional Chinese medicine formula, its function is to nourish Qi and blood, improve the body's immunity. Leukopenia has been treated with it in clinical settings. However, the mechanism of leukopenia from the perspective of intestinal tract has not been reported. This study combined metabolomics and 16S rRNA sequencing technologies to investigate the mechanism of QJSB on leukopenia from the intestine. As a result of cyclophosphamide induction in mice, the results demonstrated that QJSB may greatly increase the quantity of peripheral leukocytes (including neutrophils). Meanwhile, QJSB had a restorative effect on the colon of leukopenic mice; it also increased the level of IL-2, IL-6 and G-CSF in the intestine, further enhancing the immunity and hematopoietic function of mice. Metabolic studies showed that QJSB altered 27 metabolites, most notably amino acid metabolism. In addition, QJSB had a positive regulatory effect on the intestinal microbiota, and could alter community composition by improving the diversity and abundance of the intestinal microbial, which mainly involved 6 related bacterial groups, and primarily regulates three associated SCFAs (acetic acid, butyrate acid and valeric acid). Therefore, this study suggests that QJSB can improve hematopoietic function, enhance the immune system, relieve leucopenia and improve the gut in leucopenic mice by modulating metabolic response pathways, fecal metabolites and intestinal microbiota.

15.
Int J Biol Macromol ; 236: 123988, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907299

RESUMEN

This study aimed to develop a robust approach for the early diagnosis and treatment of tumors. Short circular DNA nanotechnology synthesized a stiff and compact DNA nanotubes (DNA-NTs) framework. TW-37, a small molecular drug, was loaded into DNA-NTs for BH3-mimetic therapy to elevate the intracellular cytochrome-c levels in 2D/3D hypopharyngeal tumor (FaDu) cell clusters. After anti-EGFR functionalization, the DNA-NTs were tethered with a cytochrome-c binding aptamer, which can be applied to evaluate the elevated intracellular cytochrome-c levels via in situ hybridization (FISH) analysis and fluorescence resonance energy transfer (FRET). The results showed that DNA-NTs were enriched within the tumor cells via anti-EGFR targeting with a pH-responsive controlled release of TW-37. In this way, it initiated the triple inhibition of "BH3, Bcl-2, Bcl-xL, and Mcl-1". The triple inhibition of these proteins caused Bax/Bak oligomerization, leading to the perforation of the mitochondrial membrane. This led to the elevation of intracellular cytochrome-c levels, which reacted with the cytochrome-c binding aptamer to produce FRET signals. In this way, we successfully targeted 2D/3D clusters of FaDu tumor cells and achieved the tumor-specific and pH-triggered release of TW-37, causing tumor cell apoptosis. This pilot study suggests that anti-EGFR functionalized, TW-37 loaded, and cytochrome-c binding aptamer tethered DNA-NTs might be the hallmark for early tumor diagnosis and therapy.


Asunto(s)
Neoplasias Hipofaríngeas , Nanotubos , Humanos , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Neoplasias Hipofaríngeas/tratamiento farmacológico , Medicina de Precisión , Proyectos Piloto , Citocromos c/metabolismo , ADN
16.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904432

RESUMEN

Since the discovery of ion-exchange resins, they have been used in many fields, including pharmacy. Ion-exchange resin-mediated preparations can realize a series of functions, such as taste masking and regulating release. However, it is very difficult to extract the drug completely from the drug-resin complex because of the specific combination of the drug and resin. In this study, methylphenidate hydrochloride extended-release chewable tablets compounded by methylphenidate hydrochloride and ion-exchange resin were selected for a drug extraction study. The efficiency of drug extraction by dissociating with the addition of counterions was found to be higher than other physical extraction methods. Then, the factors affecting the dissociation process were studied to completely extract the drug from the methylphenidate hydrochloride extended-release chewable tablets. Furthermore, the thermodynamic and kinetic study of the dissociation process showed that the dissociation process obeys the second-order kinetic process, and it is nonspontaneous, entropy-decreasing, and endothermic. Meanwhile, the reaction rate was confirmed by the Boyd model, and the film diffusion and matrix diffusion were both shown to be rate-limiting steps. In conclusion, this study aims to provide technological and theoretical support for establishing a quality assessment and control system of ion-exchange resin-mediated preparations, promoting the applications of ion-exchange resins in the field of drug preparation.

17.
J Agric Food Chem ; 71(6): 3079-3092, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36745194

RESUMEN

Acute lung injury (ALI) is the main cause of death for the elderly and children due to its high morbidity and mortality rates. Plant-derived functional foods are becoming increasingly important to the healthcare and food industries for adjunctive and alternative treatments of ALI. Polyphenols have been regarded to be beneficial to the prevention and amelioration of ALI. Rosa roxburghii Tratt fruit polyphenols (RRTP) has potential to prevent ALI, but mechanism remains unclear. This study was set up to systematically analyze the RRTP extract active ingredients, comprehensively evaluate its protective effects via lung histopathological examination, protein concentration, and cytokines production in ALI mice induced by lipopolysaccharide (LPS), and finally revealed alleviation mechanisms of the regulatory effects of RRTP by proteomics and metabolomics approach. The results demonstrated RRTP could synergistically exert significant preventive effects against ALI by notably ameliorating lung histopathological damage and pulmonary capillary permeability in ALI mice, inhibiting lung tissue inflammatory response and acute phase proteins and S-100 calcium binding proteins, suppressing excessive activation of complement and coagulation cascades, and regulating disordered lipids metabolism and amino acid metabolism. This study illustrated that RRTP has obvious advantages in ALI adjunctive therapy and revealed the complicated amelioration mechanisms, which provides a breakthrough for the development and demonstration of RRTP as a nutritional compound additive for complementary therapy of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Rosa , Ratones , Animales , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/metabolismo , Polifenoles/metabolismo , Proteómica , Frutas/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo
18.
Eur J Pharm Sci ; 180: 106328, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379359

RESUMEN

Baicalin (BG) is a bioactive flavonoid extracted from the dried root of the medicinal plant, Scutellaria radix (SR) (dicotyledonous family, Labiatae), and has several biological activities. Polyethylene glycol 400 (PEG400) has been used as a suitable solvent for several traditional Chinese medicines (TCM) and is often used as an excipient for the compound preparation of SR. However, the drug-excipient interactions between BG and PEG400 are still unknown. Herein, we evaluated the effect of a single intravenous PEG400 administration on the BG levels of rats using pharmacokinetic and tissue distribution studies. A liver microsome and recombinant enzyme incubation system were used to further confirm the interaction mechanism between PEG400 and UDP-glucuronosyltransferases (UGTs) (UGT1A8 and UGT1A9). The pharmacokinetic study demonstrated that following the co-intravenous administration of PEG400 and BG, the total clearance (CLz) of BG in the rat plasma decreased by 101.60% (p < 0.05), whereas the area under the plasma concentration-time curve (AUC)0-t and AUC0-inf increased by 144.59% (p < 0.05) and 140.05% (p < 0.05), respectively. Additionally, the tissue distribution study showed that the concentration of BG and baicalein-6-O-ß-D-glucuronide (B6G) in the tissues increased, whereas baicalein (B) in the tissues decreased, and the total amount of BG and its metabolites in tissues altered following the intravenous administration of PEG400. We further found that PEG400 induced the UGT1A8 and UGT1A9 enzyme activities by affecting the maximum enzymatic velocity (Vmax) and Michaelis-Menten constant (Km) values of UGT1A8 and UGT1A9. In conclusion, our results demonstrated that PEG400 interaction with UGTs altered the pharmacokinetic behaviors and tissue distribution characteristics of BG and its metabolites in rats.


Asunto(s)
Flavonoides , Polietilenglicoles , UDP Glucuronosiltransferasa 1A9 , Animales , Ratas , Flavonoides/administración & dosificación , Flavonoides/química , Flavonoides/farmacocinética , Microsomas Hepáticos/metabolismo , Polietilenglicoles/química , Distribución Tisular , Inyecciones Intravenosas , UDP Glucuronosiltransferasa 1A9/metabolismo
19.
Food Sci Nutr ; 10(12): 4258-4269, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514748

RESUMEN

Acute lung injury (ALI) is a respiratory disease with high morbidity and mortality rates and is the primary cause of death in children and the elderly around the world. The use of Chinese foods in the complementary and alternative treatment of ALI has attracted more and more attention. This study aimed to explore the anti-ALI activity of Chinese functional foods Rosa roxburghii Tratt fruit polyphenols (RRTP). RRTP was administered to lipopolysaccharide-induced ALI mice, and its protective effects were comprehensively evaluated by lung histopathological examination, wet/dry (W/D) ratio, and cytokine production. Metabolomics analysis was used to identify the differential metabolites and metabolic pathways in plasma, and molecular docking and systemic biology-based network pharmacology assay were performed to explore the active components and potential therapeutic targets. The results indicated that RRTP significantly attenuated the severity of pathological changes and pulmonary capillary permeability. Furthermore, RRTP limited the increase in tumor necrosis factor alpha (TNF-α), interleukin 1ß (IL-1ß), and interleukin 6 (IL-6) levels and the decrease in interleukin 10 (IL-10) levels in ALI mice. Metabolomics studies revealed that RRTP markedly affected 19 different metabolites, three amino acid metabolism pathways, and sphingolipid metabolism. Moreover, network pharmacology identified AKT1 (AKT serine/threonine kinase 1), TP53, IL-6, VEGFA (vascular endothelial growth factor A), and TNF (tumor necrosis factor) as the most promising target proteins, while quercetin, luteolin, and kaempferol were the core active components of RRTP. This study investigated the complex mechanisms of RRTP against ALI for the first time, and provided a foundation for the application of RRTP as a functional food, facilitating the research of nutritional food additives for the adjuvant treatment of ALI.

20.
Polymers (Basel) ; 14(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36236180

RESUMEN

Polyimide yarn as a kind of high performance fiber material has to improve the adhesion between the material surface and the resin in order to get a deeper application. The surface of polyimide yarn is modified by low temperature plasma treatment, and the effect of plasma treatment parameters on the adhesion between polyimide yarn and polypropylene resin is studied. By comparing the extraction force on the surface of polyimide yarn before and after treatment, the effect of plasma treatment parameters such as treatment time, processing gas and treating power on yarn adhesion is investigated. Furthermore, the adhesive force between polyimide yarn and polypropylene resin is analyzed by a single factor to optimize the process parameters to obtain higher adhesive force. Additionally, the Box-Behnken design is utilized to optimize the plasma treatment parameters, and the significance of the influence of the plasma treatment parameters on the adhesion between the polyimide fiber and the resin is discussed. The optimal process parameters are obtained through analysis: the treatment time 90 s, the processing gas oxygen, and the treating power 150 W.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...