Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 473: 134664, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38788576

RESUMEN

Epidemiological evidence indicates that exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with certain metabolic diseases. However, the relationship between PAHs and serum lipid profiles in exposed subjects remain unknown. Herein, the associations of multiple (8) urinary hydroxylated PAHs (OH-PAHs) in workers of coking (n = 655) and non-ferrous smelting (n = 614) industries with serum lipid levels (marking lipid metabolism) were examined. Multivariable linear regression, Bayesian kernel machine regression, and quantile g-computation were used. Most urinary OH-PAHs were significantly higher (p < 0.001) in coking workers than in non-ferrous smelting workers. In workers of both industries, OH-PAH exposure was associated with elevated levels of serum total cholesterol, total triglyceride, and low-density lipoprotein, as well as reduced high-density lipoprotein levels. Specifically, urinary 4-hydroxyphenanthrene was significantly positively associated with serum total cholesterol, total triglyceride, and low-density lipoprotein levels in non-ferrous smelting workers; however, the completely opposite association of 4-hydroxyphenanthrene with these lipid levels was observed in coking workers. The results of this pioneering examination suggest that exposure to OH-PAHs may contribute to dyslipidemia in coking and non-ferrous smelting workers, and distinct patterns of change were observed. Further prospective studies involving larger sample sizes are needed to further validate the findings.

2.
Front Oncol ; 14: 1401839, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800396

RESUMEN

Background: Desmoid tumor (DT) is a rare locally aggressive but non-metastatic mesenchymal soft tissue neoplasm that predominantly occurs in the abdominal wall, abdominal cavity, and extremities. Its occurrence in the mesentery is relatively uncommon. Case reports: This article reports two cases of desmoid tumor treated at the Department of Gastrointestinal Surgery, Weifang People's Hospital. The first case was a 59-year-old male patient who had previously undergone surgery for esophagogastric junction cancer. Postoperatively, he developed an intra-abdominal mass that rapidly increased in size within three months. The second case was a 60-year-old male patient who incidentally discovered a mass in the left lower abdomen. Both patients underwent surgical treatment, and the postoperative pathological diagnosis was mesenteric desmoid tumor. Conclusion: The treatment of desmoid tumor remains challenging. Simple surgical resection often yields unsatisfactory outcomes, and the efficacy of adjuvant radiotherapy and chemotherapy is also limited. Further research and clinical practice are necessary to improve diagnostic and therapeutic strategies, aiming to enhance patient survival and quality of life.

3.
Innovation (Camb) ; 5(4): 100612, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38756954

RESUMEN

Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.

4.
ACS Appl Mater Interfaces ; 16(15): 19175-19183, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573052

RESUMEN

Inorganic lead-free perovskite nanocrystals (NCs) with broadband self-trapped exciton (STEs) emission and low toxicity have shown enormous application prospects in the field of display and lighting. However, white light-emitting diodes (WLEDs) based on a single-component material with high photoluminescence quantum yield (PLQY) remain challenging. Here, we demonstrate a novel codoping strategy by introducing Sb3+/Mn2+ ions to achieve the tuneable dual emission in lead-free perovskite Cs3InCl6 NCs. The PLQY increases to 59.64% after doping with Sb3+. The codoped Cs3InCl6 NCs exhibit efficient white light emission due to the energy transfer channel from STEs to Mn2+ ions with PLQY of 51.38%. Density functional theory (DFT) calculations have been used to verify deeply the effects of Sb3+/Mn2+ doping. WLEDs based on Sb3+/Mn2+-codoped Cs3InCl6 NCs are explored with color rendering index of 85.5 and color coordinate of (0.398, 0.445), which have been successfully applied as photodetector lighting sources. This work provides a new perspective for designing novel lead-free perovskites to achieve single-component WLEDs.

5.
Environ Pollut ; 346: 123684, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428790

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), known for their health risks, are prevalent in the environment, with the coking industry being a major source of their emissions. To bridge the knowledge gap concerning the relationship between environmental and dietary PAH exposure, we explore this complex interplay by investigating the dietary exposure characteristics of 24 PAHs within a typical Chinese coking plant and their association with environmental pollution. Our research revealed Nap and Fle as primary dietary contaminants, emphasizing the significant influence of soil and atmospheric pollution on PAH exposure. We subjected our data to non-metric multidimensional scaling (NMDS), Spearman correlation analysis, Lasso regression, and Weighted Quantile Sum (WQS) regression to delve into this multifaceted phenomenon. NMDS reveals that dietary PAH exposure, especially within the high molecular weight (HMW) group, is common both within and around the coking plant. This suggests that meals prepared within the plant may be contaminated, posing health risks to coking plant workers. Furthermore, our assessment of dietary exposure risk highlights Nap and Fle as the primary dietary contaminants, with BaP and DahA raising concerns due to their higher carcinogenic potential. Our findings indicate that dietary exposure often exceeds acceptable limits, particularly for coking plant workers. Correlation analyses uncover the dominant roles of soil and atmospheric pollution in shaping dietary PAH exposure. Soil contamination significantly impacts specific PAHs, while atmospheric pollution contributes to others. Additionally, WQS regression emphasizes the substantial influence of soil and drinking water on dietary PAHs. In summary, our study sheds light on the dietary exposure characteristics of PAHs in a typical Chinese coking plant and their intricate interplay with environmental factors. These findings underscore the need for comprehensive strategies to mitigate PAH exposure so as to safeguard both human health and the environment in affected regions.


Asunto(s)
Coque , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Coque/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Exposición Dietética/análisis , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Medición de Riesgo , Suelo , China
6.
Sci Total Environ ; 924: 171608, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38492588

RESUMEN

The ubiquitous presence of emerging contaminants (ECs) in the environment and their associated adverse effects has raised concerns about their potential risks. The increased toxicity observed during the environmental transformation of ECs is often linked to the formation of their transformation products (TPs). However, comprehension of their formation mechanisms and contribution to the increased toxicity remains an unresolved challenge. To address this gap, by combining quantum chemical and molecular simulations with photochemical experiments in water, this study investigated the formation of TPs and their molecular interactions related to estrogenic effect using the photochemical degradation of benzylparaben (BZP) preservative as a representative example. A non-targeted analysis was carried out and three previously unknown TPs were identified during the transformation of BZP. Noteworthy, two of these novel TPs, namely oligomers BZP-o-phenol and BZP-m-phenol, exhibited higher estrogenic activities compared to the parent BZP. Their IC50 values of 0.26 and 0.50 µM, respectively, were found to be lower than that of the parent BZP (6.42 µM). The binding free energies (ΔGbind) of BZP-o-phenol and BZP-m-phenol (-29.71 to -23.28 kcal·mol-1) were lower than that of the parent BZP (-20.86 kcal·mol-1), confirming their stronger binding affinities toward the estrogen receptor (ER) α-ligand binding domain. Subsequent analysis unveiled that these hydrophobic residues contributed most favorably to ER binding, with van der Waals interactions playing a significant role. In-depth examination of the formation mechanisms indicated that these toxic TPs primarily originated from the successive cleavage of ester bonds (OCH2C6H5 and COO group), followed by their combination with BZP*. This study provides valuable insight into the mechanisms underlying the formation of toxic TPs and their binding interactions causing the endocrine-disrupting effects. It offers a crucial framework for elucidating the toxicological patterns of ECs with similar structures.


Asunto(s)
Estrógenos , Contaminantes Químicos del Agua , Estrógenos/toxicidad , Parabenos/toxicidad , Parabenos/análisis , Fotólisis , Conservadores Farmacéuticos/toxicidad , Contaminantes Químicos del Agua/análisis
7.
J Environ Sci (China) ; 141: 225-234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408823

RESUMEN

Acetylacetone (AcAc) is a typical class of ß-diketones with broad industrial applications due to the property of the keto-enol isomers, but its isomerization and chemical reactions at the air-droplet interface are still unclear. Hence, using combined molecular dynamics and quantum chemistry methods, the heterogeneous chemistry of AcAc at the air-droplet interface was investigated, including the attraction of AcAc isomers by the droplets, the distribution of isomers at the air-droplet interface, and the hydration reactions of isomers at the air-droplet interface. The results reveal that the preferential orientation of two AcAc isomers (keto- and enol-AcAc) to accumulate and accommodate at the acidic air-droplet interface. The isomerization of two AcAc isomers at the acidic air-droplet interface is more favorable than that at the neutral air-droplet interface because the "water bridge" structure is destroyed by H3O+, especially for the isomerization from keto-AcAc to enol-AcAc. At the acidic air-droplet interface, the carbonyl or hydroxyl O-atoms of two AcAc isomers display an energetical preference to hydration. Keto-diol is the dominant products to accumulate at the air-droplet interface, and excessive keto-diol can enter the droplet interior to engage in the oligomerization. The photooxidation reaction of AcAc will increase the acidity of the air-droplet interface, which indirectly facilitate the uptake and formation of more keto-diol. Our results provide an insight into the heterogeneous chemistry of ß-diketones and their influence on the environment.


Asunto(s)
Pentanonas , Agua , Isomerismo , Pentanonas/química , Agua/química
8.
Sci Total Environ ; 916: 170030, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220008

RESUMEN

Derivatives of polycyclic aromatic hydrocarbons (PAHs) pose significant threat to environment and human health due to their widespread and potential hazards. However, adverse effects and action mechanisms of PAH derivatives on human health have not been attempted yet. Herein, we chose pyrene and its derivatives (1-hydroxypyrene, 1-nitropyrene, and 1-methylpyrene) to investigate adverse effect mechanism to human lungs using in vitro and in vivo methods. Results showed that pyrene derivatives have higher lung health risks than original pyrene. They can activate AhR, subsequently affecting expression of downstream target genes CYP1A1 and CYP1B1. The binding energies of pyrene and its derivatives ranged from -16.07 to -27.25 kcal/mol by molecular dynamics simulations, implying that pyrene and its derivatives acted as agonists of AhR and increased adverse effects on lungs. Specifically, 1-nitropyrene exhibited stabler binding conformation and stronger AhR expression. In addition, sensitivity of pyrene and its derivatives to AhR activation was attributed to type and number of key amino acids in AhR, that is, pyrene (Leu293), 1-nitropyrene (Cys333, Met348, and Val381), 1-hydroxypyrene (Leu293 and Phe287), and 1-methylpyrene (Met348). In summary, we provide a universal approach for understanding action mechanisms of PAH derivatives on human health, and their adverse effects should be taken seriously.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Receptores de Hidrocarburo de Aril , Humanos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Pulmón/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pirenos/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo
9.
J Org Chem ; 89(3): 1956-1966, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38268404

RESUMEN

A general and practical methodology for the regio- and stereoselective synthesis of multifunctional tetrasubstituted allylic amines and azides based on iodoamination of ferrocene-containing allenylphosphonates with anilines and sodium azide is described. A tetrasubstituted olefin moiety, as well as an iodine atom, a phosphonate, and a ferrocene group, are installed to the allylic amine motif simultaneously in moderate to good yields.

10.
J Hazard Mater ; 464: 133004, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37984141

RESUMEN

Studies in cell culture and animal models suggest hepatotoxicity of some volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), however, their effects in human populations under real exposure conditions have never been clarified. In this cross-sectional study, 224 participants, 38 e-waste dismantling workers and 186 subjects residing near to the dismantling sites in southern China, were evaluated for personal inhalational exposure to 72 VOCs and 91 SVOCs according to site-specific atmospheric chemical concentrations and personal exposure time. Additionally, their serum samples were subjected to liver function tests (LFTs), including total protein (TP), albumin (ALB), globulin (GLB), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transpeptidase (GGT), and bilirubin. Linear regression analysis of the VOC/SVOC levels against the LFTs results indicated that VOC exposure was negatively associated with the TP, ALB, GLB levels (indicating liver-specific protein synthesis functions), while positively associated with AST, ALT, GGT activities (marking liver damage). Somehow, SVOC exposure appeared to be positively associated with not only AST and ALT but also TP and ALB. These findings were supported by the quantile g-computation analysis and confirmed in the Bayesian kernel machine regression model. This study indicates that simultaneous inhalation of VOCs and SVOCs may impair human liver functions.


Asunto(s)
Residuos Electrónicos , Hepatopatías , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Teorema de Bayes , Estudios Transversales , Albúminas , Hígado
11.
Eco Environ Health ; 2(1): 32-39, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38074450

RESUMEN

Personal care products (PCPs) inevitably come into contact with the skin in people's daily life, potentially causing adverse effects on human health. The adverse effects can be exacerbated under UV irradiation but are rarely studied. In this study, to clearly understand the damage of representative PCPs to human skin and their photochemical transformation behaviors, fragrance tonalide (AHTN) was measured in the presence of amino acids as a basic building block of human tissue. The results showed that amino acids could decelerate the photochemical transformation rate of AHTN, increasing the likelihood of AHNT persisting on the skin surface and the health risk to the human being. Further, the interaction between amino acids and AHTN was investigated. AHTN could play bidirectional roles in damaging amino acids: the photosensitizer and reactive activator. As a photosensitizer, the 1O2 generated from the AHTN photosensitization was partly employed to oxidative damage amino acids. Furthermore, by combining experiments with quantum chemical computation, the carbonyl group of the activator AHTN was found to be the active site to activate the N-containing group of amino acids. The activation mechanism was the electron transfer between AHTN and amino acids. Imines formed during the photochemical transformation of AHTN with histidine/glycine were the molecular initiating event for potential skin sensitization. This study reported for the first time that skin photosensitizer formation threatens human health during the photochemical transformation of AHTN.

12.
Curr Res Food Sci ; 7: 100534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441166

RESUMEN

Dihydrxytetraphenylmethane, also known as Bisphenol BP (BPBP), has been increasingly used in industrial production and more frequently detected in the environment as an alternative plasticizer of BPA. However, there are no reports about BPBP in food safety or its effects on cellular lipogenesis. The purpose of this research was to investigate the influence and potential mechanisms of BPBP on adipogenesis in 3T3-L1 cells. Cells were treated with 4 concentrations (0.01, 0.1, 1, and 10 µM) of BPBP and the results showed that treatment with at low concentrations (0.01 µM) promoted cell fat differentiation and triglyceride accumulation. RNA-seq data showed that a total of 370 differentially expressed genes between control and the low-dose BPBP-treated group were determined, including 227 upregulated genes and 143 downregulated genes. Some key genes related to adipocyte differentiation and adipogenesis were significantly enriched after BPBP treatment, including PPAR-γ, Adipoq, Nr1h3 and Plin1. Pathway analyses suggest that the activation of PPAR-γ signaling pathway may be key for BPBP to promote adipocyte differentiation and fat accumulation. Our work provides evidence for the potential obesogenic effect of BPBP and may call for further research on the safety of the chemical in food products.

13.
Ecotoxicology ; 32(4): 536-543, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37133692

RESUMEN

Antibiotics are emerging contaminants and widely used in human healthcare, livestock, and aquaculture. The toxicity posed by antibiotics and their mixtures in sediments depends on their bioavailability. Now, the bioavailability of organic materials can be determined accurately by the diffusive gradients in thin films (DGT) technique. This technique was used for the first time ever in this study to evaluate in detail the integral toxicity of antibiotics in sediments to aquatic biota. Zhelin Bay was selected as a case study, because it is the largest mariculture area in eastern Guangdong, South China. Two antibiotics, chlortetracycline (CTC) (A) and sulfachlorpyridazine (SCP), were detected at average concentrations of 2.83 and 1.14 ng/ml, respectively. The other fifteen antibiotics were undetectable. The single risk assessment based on the risk quotient (RQ) of CTC and SCP shows that a relatively low risk has occurred. After this careful assessment of probabilistic ecotoxicological risks, the combined toxicity of antibiotic mixtures (CTC and SCP) clearly indicates that the toxicity probability of surface sediments to aquatic organisms was relatively low (0.23%).


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Humanos , Antibacterianos/toxicidad , Organismos Acuáticos , Ecotoxicología , Acuicultura , Biota , China , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
14.
Sens Actuators B Chem ; 390: 133950, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37193119

RESUMEN

Mpox (formerly referred as Monkeypox) outbreak has been declared a Public Health Emergency of International Concern. However, traditional polymerase chain reaction (PCR) diagnostic technology is not ideal for on-site applications. To conduct the sample-to-result Mpox viral particles detection outside the laboratories, we developed an easy-to-operate palm-size pouch, termed Mpox At-home Self-Test and point-of-caRe Pouch (MASTR Pouch). In this MASTR Pouch, the fast and accurate visualization was achieved by incorporating recombinase polymerase amplification (RPA) with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas12a system. From viral particle lysis to naked eye readout, MASTR Pouch required only four simple steps to accomplish the analysis process within 35 min. Fifty-three Mpox pseudo-viral particles in exudate (10.6 particles/µL) were able to be detected. To verify the practicability, 104 mock Mpox clinical exudate specimens were tested. The clinical sensitivities were determined to be 91.7%- 95.8%. There was no false-positive result, validating the 100% clinical specificity. MASTR Pouch approaches the WHO's ASSURD criteria for point-of-care diagnostic, which will be beneficial for mitigating Mpox's global spread. The versatility potential of MASTR Pouch could further revolutionize infection diagnosis.

15.
Sci Total Environ ; 888: 163611, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37172835

RESUMEN

New particle formation (NPF) represents a significant source of aerosol particles in the atmosphere; however, the NPF mechanisms remain uncertain, hindering the understanding and assessment of its environmental effects. Hence, we investigated the nucleation mechanisms in multicomponent systems including two inorganic sulfonic acids (ISAs), two organic sulfonic acids (OSAs), and dimethylamine (DMA) by combining quantum chemical (QC) calculations and molecular dynamics (MD) simulations, and evaluated the comprehensive effect of ISAs and OSAs on DMA-driven NPF. The QC results showed that the (Acid)2(DMA)0-1 clusters were strongly stable, and the (ISA)2(DMA)1 clusters exhibited higher stability than the (OSA)2(DMA)1 clusters because ISAs (sulfuric and sulfamic acids) provided more H-bonds and stronger proton transfer than OSAs (methanesulfonic and ethanesulfonic acids). ISAs readily engaged in dimer formation, whereas the stability of trimer clusters was mainly regulated by the synergistic effects of ISAs and OSAs. OSAs participated in cluster growth earlier than ISAs. Our results revealed that ISAs promote cluster formation, whereas OSAs facilitate the growth of clusters. The synergistic effect of ISAs and OSAs should be further investigated in areas with high [OSAs]: [ISAs].

16.
Environ Int ; 174: 107890, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37001212

RESUMEN

Hydroxylated metabolites in the living body are considered as a potential biomarker of exposure to emerging contaminations (ECs) and breast cancer, but their formation mechanism has not received enough attention. Besides, the adverse impacts of metabolites during the metabolic transformation of ECs largely remain unknown. In this study, we employed a density functional calculation combing with in-vitro incubation of human liver microsomes to explore the bio-transformation of preservative methylparaben (MPB) in human bodies. Our results showed that hydroxylated metabolites of MPB (OH-MPB) were observed experimentally, while a formation mechanism was revealed at the molecular level. That is, hydroxylated metabolite was exclusively formed via the hydrogen abstraction from the phenolic hydroxyl group of MPB followed by the OH-rebound pathway, rather than the direct hydroxylation on the benzene ring. The increasing of hydroxyl groups on ECs could improve the metabolisms. This was confirmed in the metabolism of ECs without hydroxyl group and with multiple-hydroxyl groups, respectively. Furthermore, toxicity assessments show that compared to parent MPB, the hydroxylated metabolites have increased negative impacts on the gastrointestinal system and liver. A semiquinone product exhibits potential damage in the cardiovascular system and epoxides are toxic to the blood and gastrointestinal system. The findings deepen our insight into the biotransformation of parabens in human health, especially by providing health warnings about the potential impacts caused by semiquinone and epoxides.


Asunto(s)
Parabenos , Conservadores Farmacéuticos , Humanos , Parabenos/toxicidad , Conservadores Farmacéuticos/toxicidad , Biotransformación , Catálisis
17.
Toxics ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36851060

RESUMEN

The environmental transformation and health effects of endocrine disruptors (EDCs) need urgent attention, particularly the formation of transformation products with higher toxicity than parent EDCs. In this paper, an important transformation product dimer (short for ethyl 4-hydroxy-3-(2-((4-hydroxybenzoyl) oxy) ethyl) benzoate) with estrogenic activity was investigated and detected in the photolysis of preservative ethyl-paraben (EPB) dissolved in actual water. The environmental factors, such as the higher initial concentration of EPB, the stronger optical power and the lower pH could stimulate the formation of the dimer. Simultaneously, the interaction of multiple environmental factors was significant, especially the initial concentration and pH using the response surface methodology. Furthermore, the relationship between the environmental factors and the formation of the product dimer was further explained and the empirical model equation was built for predicting the amount of dimer in actual water. Quantum chemical and toxicological calculations showed the estrogenic effect mechanism of the product dimer and it was revealed further that the hydrogen bonds of the dimer and ERα proteins (ARG-394, Glu-353, His-524, GYY-521) were formed, with a lowest binding energy of -8.38 Kcal/mol during molecular docking. In addition, the health effect risk of the product dimer was higher than the parent compound in the blood, cardiovascular system, gastrointestinal system, kidney and liver. In short, the present study was of great significance for the transformation product in pollution control and health effects in the photolysis of EDCs.

18.
J Hazard Mater ; 450: 131081, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36848840

RESUMEN

To activate persulfate to generate reactive species such as sulfate radical (SO4•-) for micropollutants abatement, external energy or chemicals are often needed. In this study, a novel SO4•- formation pathway was reported during the oxidation of neonicotinoids by peroxydisulfate (S2O82-, PDS) without any other chemical additions. Thiamethoxam (TMX) was used as a representative neonicotinoid and SO4•- was the dominant specie contributing to its degradation during PDS oxidation at neutral pH. TMX anion radical (TMX•-) was found to activate PDS to generate SO4•- with the second-order reaction rate constant determined to be (1.44 ± 0.47)× 106 M-1s-1 at pH 7.0 by using laser flash photolysis. TMX•- was generated from the TMX reactions with superoxide radical (O2•-), which was formed from the hydrolysis of PDS. This indirect PDS activation pathway via anion radicals was also applicable to other neonicotinoids. The formation rates of SO4•- were found to negatively linearly correlated with Egap (LUMO-HOMO). The DFT calculations indicated the energy barrier of anion radicals to activate PDS was greatly reduced compared to the parent neonicotinoids. The pathway of anion radicals' activation of PDS to form SO4•- improved the understanding of PDS oxidation chemistry and provided some guidance to enhance oxidation efficiency in field applications.

19.
J Hazard Mater ; 446: 130710, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603429

RESUMEN

Soil is an important sink for various pollutants. Recent findings suggest that soil and sediment would spontaneously form HO• through Fenton or Fenton-like reactions under natural conditions. In this study, the effects and mechanisms of organic ligands (OLs) on the occurrence of HO• in surface soil/sediment were experimentally and computationally examined. Results confirmed that HO• generation was ND-12.92 nmol/g in surface soil/sediment, and the addition of EDTA-2Na would significantly enhance the yields of HO• by 1.4-352 times. Moisture was the decisive factor of soil HO• generation. The release of Fe(II) from solid into the aqueous phase was essential for the stimulation of HO• in EDTA-2Na suspensions. Furthermore, complexation reactions between Fe(II) and OLs would enhance single electron transfer (SET) reactions and the formation of O2•-. Interestingly, for specific OLs, their stimulations on SET and formation of O2•- would depress HO• generation. Provoking HO• generation by OLs could be efficiently used to degrade sulfamethoxazole in rice field sediment. The study provided new knowledge on how commonly synthetic OLs affect the HO• generation in surface soil/sediment, and it additionally shed light on the engineered stimulation of in-situ Fenton reactions in natural soil/sediment.

20.
J Environ Sci (China) ; 126: 103-112, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503740

RESUMEN

Organosulfate (OSA) nanoparticles, as secondary organic aerosol (SOA) compositions, are ubiquitous in urban and rural environments. Hence, we systemically investigated the mechanisms and kinetics of aqueous-phase reactions of 1-butanol/1-decanol (BOL/DOL) and their roles in the formation of OSA nanoparticles by using quantum chemical and kinetic calculations. The mechanism results show that the aqueous-phase reactions of BOL/DOL start from initial protonation at alcoholic OH-groups to form carbenium ions (CBs), which engage in the subsequent esterification or oligomerization reactions to form OSAs/organosulfites (OSIs) or dimers. The kinetic results reveal that dehydration to form CBs for BOL and DOL reaction systems is the rate-limiting step. Subsequently, about 18% of CBs occur via oligomerization to dimers, which are difficult to further oligomerize because all reactive sites are occupied. The rate constant of BOL reaction system is one order of magnitude larger than that of DOL reaction system, implying that relative short-chain alcohols are more prone to contribute OSAs/OSIs than long-chain alcohols. Our results reveal that typical long-chain alcohols contribute SOA formation via esterification rather than oligomerization because OSA/OSI produced by esterification engages in nanoparticle growth through enhancing hygroscopicity.


Asunto(s)
Alcoholes , Alcoholes Grasos , Aerosoles , Butanoles , Polímeros , 1-Butanol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA