Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(11): 31102-31115, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36441309

RESUMEN

Pilot scale production of one-dimensional (FeS2)nn- rods was performed by using an automatic 20 L vessel at 80 °C under atmosphere condition with the resource utilization of Fe-rich sludge. The sludge was simulated at lab-scale with chemical pure of ferric trichloride. After the sludge treatment, the corresponding rods were not formed at room temperature. But by heating at 80 °C, erdite rod was well-crystallized after 0.5 h by only adding Na halite, and KFeS2 rod was crystallized weakly after 2 h and highly at 10 h with the addition of K halite. After 48 h heating, the rods grow radially to 300 nm for erdite, but to 5 µm for KFeS2. However, at room temperature, erdite rod was converted to high crystallized KFeS2 in KOH water or ethanol solution, whilst the conversion of KFeS2 rod to erdite also occurred in NaOH water solution, but terminated in NaOH ethanol solution, without any morphology change. It is also noted that with the presence of both Na and K halite, the rod was an intermediate of erdite to KFeS2 with 1 µm length after heating at 100 °C but converted to 10-µm-length KFeS2 crystal at the temperature of > 120 °C. The thermodynamic results confirmed that during the rod polymerization, the Fe(OH)3HS- formation was the sole rate-limiting step and showed a positive Gibbs value of 6.45 kJ/mol at room temperature and negative values at the temperature of > 48 °C. In summary, this method not only enabled the vaporization of waste Fe-rich sludge as value-added rods without generating any secondary waste but also showed a new route for the in situ conversion of erdite/KFeS2 rods at room temperature.


Asunto(s)
Aguas del Alcantarillado , Agua , Aguas del Alcantarillado/química , Hidróxido de Sodio , Temperatura , Agua/química , Hierro
2.
J Colloid Interface Sci ; 608(Pt 2): 1141-1150, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742054

RESUMEN

A low-temperature hydrothermal process was developed to synthesize erdite adsorbent from a solid waste sludge contained 10.2% Fe, 6.2% Al and 1.4% Si, alongside 59.5% water content. At 90℃, adding Na2S and NaOH could convert it into erdite nanorods with a diameter of 80 nm and a length of 100 nm. In the sludge, only Fe oxyhydroxide was involved in the formation of erdite, and the other Al/Si-bearing compounds were dissolved in an alkaline medium. The dissolved Al/Si-bearing compounds were further removed, forming faujasite so that the used medium was purified and then entirely recycled into the next conversion stage. No secondary waste was generated in the pilot-scale conversion, and the adsorption efficiency of the prepared products to wastewater with a high initial Cr(VI) concentration of 1000 mg/L was more than 99.5%. The adsorption data complied with the pseudo-second-order kinetics. During the wastewater treatment, hexavalent chromium anion diffused to erdite surface and replaced OH/SH groups of adjacent structural Fe to form a stable complex ligand. In addition, the redox reaction between hexavalent chromium and the -SH group occurred to generate a trivalent chromium complex on the Fe/S-bearing flocs surface.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Adsorción , Cromo/análisis , Hierro , Cinética , Aguas Residuales , Contaminantes Químicos del Agua/análisis
3.
ACS Omega ; 6(11): 7351-7359, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33778248

RESUMEN

Groundwater treatment sludge is a Fe/Mn-rich waste generated in mass production in a groundwater treatment plant for potable water production. The conventional disposal of sludge, such as direct discharge into river/lake, sea, and landfill, is not environmentally sustainable. Herein, a novel method was proposed to effectively separate Fe/Al and recover Mn via a combined hydrochloric acid leaching and hydrothermal route. The sludge contained 14.6% Fe, 6.3% Mn, and 11.5% Al and was first dissolved in 5 M HCl to prepare a leaching solution. Second, the leaching solution was hydrothermally treated, in which 97.1% Fe and 94.8% Al were precipitated as hematite and boehmite and more than 98% Mn was kept. Increasing the reaction temperature to 270 °C was beneficial for Fe/Al removal. With the consumption of abundant H+, the reaction of added glucose and nitrate accelerated as the temperature increased. An optimal pH was utilized for Fe/Al hydrolysis and crystallization, leading to extensive removal of Fe/Al. Third, the residual solution was adjusted to pH 8.3 with NaOH, and approximately, 99.2% Mn was removed as hausmannite with a Mn content of 63.6%. This method exhibited efficient separation of impure Fe/Al from Mn-rich groundwater treatment plant iron mud, and the recycled high-purity hausmannite was a marketable active pharmaceutical ingredient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...