Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 327: 117994, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437889

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ixeris sonchifolia alias Kudiezi, it was named Ixeris sonchifolia (Bunge) Hance, a synonym for Crepidiastrum sonchifolium (Bunge) Pak & Kawano in the https://www.iplant.cn/. And it was first published in J. Linn. Soc., Bot. 13: 108 (1873), which was named Ixeris sonchifolia (Maxim.) Hance in the MPNS (http://mpns.kew.org). As a widely distributed medicinal and edible wild plant, it possesses unique bitter-cold characteristics and constituents with various pharmacological activities. Its main antitumor substances, same as artemisinin and paclitaxel, are classified as terpenoids and have become research foci in recent years. However, its specific biological activity and role in antitumor treatment remain largely unclear. AIM OF THE STUDY: This study aimed to elucidate the molecular targets and potential mechanisms of hepatocellular carcinoma apoptosis induced by Ixeris sonchifolia. MATERIALS AND METHODS: We used network pharmacology methods to analyze and screen the active ingredients and possible underlying mechanisms of Ixeris sonchifolia in treating liver cancer and employed integrative time- and dose-dependent toxicity, transcriptomics, and molecular biology approaches to comprehensively verify the function of Ixeris sonchifolia extract (IsE) in human hepatoblastoma cell (HepG2) apoptosis and its potential mechanism. RESULTS: A total of 169 common targets were screened by network pharmacology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that IsE inhibited HepG2 cell activity in a time- and dose-dependent manner. Western blot analysis confirmed that IsE promoted HepG2 cell apoptosis by inhibiting the PI3K/AKT signaling pathway and that the PI3K/AKT inhibitor LY294002 also substantially enhanced IsE-induced apoptosis. The PI3K/AKT signaling pathway exhibited significant differences compared to that in the control group. CONCLUSION: Combining network pharmacology with experimental verification, IsE inhibited mitochondrial function and the PI3K/AKT pathway while inducing hepatoma cell apoptosis. IsE may have promising potential for liver cancer treatment and chemoprevention.


Asunto(s)
Asteraceae , Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Farmacología en Red , Apoptosis , Simulación del Acoplamiento Molecular
2.
World J Hepatol ; 15(4): 460-476, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37206651

RESUMEN

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, accounting for 75%-85% of cases. Although treatments are given to cure early-stage HCC, up to 50%-70% of individuals may experience a relapse of the illness in the liver after 5 years. Research on the fundamental treatment modalities for recurrent HCC is moving significantly further. The precise selection of individuals for therapy strategies with established survival advantages is crucial to ensuring better outcomes. These strategies aim to minimize substantial morbidity, support good life quality, and enhance survival for patients with recurrent HCC. For individuals with recurring HCC after curative treatment, no approved therapeutic regimen is currently available. A recent study presented novel approaches, like immunotherapy and antiviral medication, to improve the prognosis of patients with recurring HCC with the apparent lack of data to guide the clinical treatment. The data supporting several neoadjuvant and adjuvant therapies for patients with recurring HCC are outlined in this review. We also discuss the potential for future clinical and translational investigations.

3.
Int J Oncol ; 57(1): 54-66, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32236573

RESUMEN

Tumor biomarkers are important in the early screening, diagnosis, therapeutic evaluation, recurrence and prognosis prediction of tumors. Primary liver cancer is one of the most common malignant tumors; it has high incidence and mortality rates and seriously endangers human health. The main pathological types of primary liver cancer include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined HCC­cholangiocarcinoma (cHCC­CC). In the present review, a systematic outline of the current biomarkers of primary liver cancer is presented, from conventional blood biomarkers, histochemical biomarkers and potential biomarkers to resistance­associated biomarkers. The important relationships are deeply elucidated between biomarkers and diagnosis, prognosis, clinicopathological features and resistance, as well as their clinical significance, in patients with the three main types of primary liver cancer. Moreover, a summary of several important biomarker signaling pathways is provided, which is helpful for studying the biological mechanism of liver cancer. The purpose of this review is to provide help for clinical or medical researchers in the early diagnosis, differential diagnosis, prognosis and treatment of HCC.


Asunto(s)
Neoplasias de los Conductos Biliares/diagnóstico , Biomarcadores de Tumor/análisis , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/mortalidad , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Diagnóstico Diferencial , Resistencia a Antineoplásicos , Detección Precoz del Cáncer/métodos , Humanos , Hígado/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Pronóstico , Transducción de Señal
4.
Huan Jing Ke Xue ; 39(9): 4294-4301, 2018 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-30188074

RESUMEN

In this study, a sequencing batch reactor (SBR) was operated to investigate the inhibitory kinetics of free ammonia (FA) on ammonia-oxidizing bacteria (AOB). At the beginning of the experiment, FA concentrations in influent were altered to achieve stable short-cut nitrification and enrich AOB. Nitritation sludge was then employed to study variations in the specific nitrite production rate (SNiPR) during the ammonia oxidation process of batch tests. Furthermore, a kinetic model of FA inhibition on AOB activity was fitted for statistical analysis. Results showed that SNiPR increased rapidly with increase in FA concentration (0.7 mg·L-1 ≤ FA ≤ 50.2 mg·L-1) but decreased with an increase in FA concentration (FA ≥ 50.2 mg·L-1). SNiPR was maintained at 0 g·(g·d)-1 when FA concentration was higher than 687.1 mg·L-1, implying that AOB activity was completely inhibited. Statistical analysis showed that, compared to Haldane, Edwards-1#, Edwards-2#, and Luong inhibition kinetics models, the Aiba model was the most suitable for describing the inhibitory effect of FA on AOB activity. The statistical constants, i.e., residual square sum (RSS) correlation coefficient (R2), F value of the fitting equation, and confidence degree (P) were 0.005, 0.932, 181.7, and 1.06×10-9, respectively. The dynamic constant values, i.e., maximum specific nitrite production rate (rmax), half saturation constant (KS), and inhibition constant (KI) were 0.37 g·(g·d)-1, 11.78 mg·L-1, and 153.74 mg·L-1, respectively.


Asunto(s)
Amoníaco/metabolismo , Bacterias/metabolismo , Reactores Biológicos/microbiología , Cinética , Nitrificación , Nitritos/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...