Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.452
Filtrar
1.
Environ Toxicol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747344

RESUMEN

Breast cancer (BC) is a heterogeneous malignancy with a dismal prognosis. Disulfidptosis is a novel type of regulated cell death that happens in the presence of glucose deficiency and is linked to the metabolic process of glycolysis. However, the mechanism of action of disulfidptosis and glycolysis-related genes (DGRG) in BC, as well as their prognostic value in BC patients, remain unknown. After identifying the differentially expressed DGRG in normal and BC tissues, a number of machine learning algorithms were utilized to select essential prognostic genes to develop a model, including SLC7A11, CACNA1H, SDC1, CHST1, and TFF3. The expression characteristics of these genes were then examined using single-cell RNA sequencing, and BC was classified into three clusters using "ConsensusClusterPlus" based on these genes. The DGRG model's median risk score can categorize BC patients into high-risk and low-risk groups. Furthermore, we investigated variations in clinical landscape, immunoinvasion analysis, tumor immune dysfunction and rejection (TIDE), and medication sensitivity in patients in the DGRG model's high- and low-risk groups. Patients in the low-risk group performed better on immunological and chemotherapeutic therapies and had lower TIDE scores. In conclusion, the DGRG model we developed has significant clinical application potential because it can accurately predict the prognosis of BC, TME, and pharmacological treatment responses.

2.
Toxicol Lett ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734220

RESUMEN

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.

3.
Fitoterapia ; 176: 105998, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734212

RESUMEN

Three Stemona alkaloids named stemotuberines A-C (1-3) with unique C17N frameworks, presumably formed by elimination of the C-11-C-15 lactone ring of the stichoneurine skeleton, were isolated from the roots of Stemona tuberosa. Their structures were elucidated by spectroscopic analysis, X-ray diffraction, and computational methods. Compounds 2 and 3 showed inhibition (IC50 values of 37.1 and 23.2 µM, respectively) against LPS-induced nitric oxide production in RAW 264.7 cells. In addition, concern was expressed about the reported plant origin (S. sessilifolia) of the recently described alkaloids tuberostemonols O-R (4-7), which should be S. tuberosa. NMR calculations indicated structural misassignment of these compounds except for 6. Isolation of tuberostemonol P (5) from our material of S. tuberosa allowed for a close examination of the spectroscopic data leading to the revised structure 5a. Tuberostemonol R (7) was found to have identical 1H and 13C NMR data to the well-known alkaloid croomine, and therefore its structure including relative stereochemistry must be revised as 7a.

4.
IEEE Trans Image Process ; 33: 3301-3313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38700958

RESUMEN

Recently, action recognition has attracted considerable attention in the field of computer vision. In dynamic circumstances and complicated backgrounds, there are some problems, such as object occlusion, insufficient light, and weak correlation of human body joints, resulting in skeleton-based human action recognition accuracy being very low. To address this issue, we propose a Multi-View Time-Series Hypergraph Neural Network (MV-TSHGNN) method. The framework is composed of two main parts: the construction of a multi-view time-series hypergraph structure and the learning process of multi-view time-series hypergraph convolutions. Specifically, given the multi-view video sequence frames, we first extract the joint features of actions from different views. Then, limb components and adjacent joints spatial hypergraphs based on the joints of different views at the same time are constructed respectively, temporal hypergraphs are constructed joints of the same view at continuous times, which are established high-order semantic relationships and cooperatively generate complementary action features. After that, we design a multi-view time-series hypergraph neural network to efficiently learn the features of spatial and temporal hypergraphs, and effectively improve the accuracy of skeleton-based action recognition. To evaluate the effectiveness and efficiency of MV-TSHGNN, we conduct experiments on NTU RGB+D, NTU RGB+D 120 and imitating traffic police gestures datasets. The experimental results indicate that our proposed method model achieves the new state-of-the-art performance.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167205, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696846

RESUMEN

Procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (Plod2) is a key collagen lysyl hydroxylase mediating the formation of collagen fiber and stabilized collagen cross-links, and has been identified in several forms of fibrosis. However, the potential role and regulatory mechanism of Plod2 in liver fibrosis remain unclear yet. Mouse liver fibrosis models were induced by injecting carbon tetrachloride (CCl4) intraperitoneally. The morphology and alignment of collagen was observed under transmission and scanning electron microscopy, and extracellular matrix (ECM) stiffness was measured by atomic force microscopy. Large amounts of densely packed fibrillar collagen fibers produced by myofibroblasts (MFs) were deposited in fibrotic liver of mice reaching very large diameters in the cross section, accompanied with ECM stiffening, which was positively correlated with collagen-crosslinking. The expression of Plod2 was dynamically up-regulated in fibrotic liver of mouse and human. In MFs transfection of Plod2 siRNA made collagen fibers more orderly and linear aligned which can be easily degraded and protected from ECM stiffness. Administration of Plod2 siRNA preventatively or therapeutically in CCl4 mice reduced the average size of collagen bundles in transverse section, increased collagen solubility, decreases the levels of crosslinking products hydroxylysylpyridinoline and lysylpyridinoline, prevented ECM stiffening and alleviated liver fibrosis. Altogether, Plod2 mediates the formation of stabilized profibrotic collagen cross-links in MFs, leading to the alteration of collagen solubility and ECM stiffness, and eventually aggravates liver fibrosis, which provide potential target for the treatment of liver disease.


Asunto(s)
Tetracloruro de Carbono , Colágeno , Matriz Extracelular , Cirrosis Hepática , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Animales , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Ratones , Matriz Extracelular/metabolismo , Humanos , Colágeno/metabolismo , Tetracloruro de Carbono/toxicidad , Masculino , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Miofibroblastos/patología , Hígado/metabolismo , Hígado/patología , Modelos Animales de Enfermedad
6.
Small ; : e2400415, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698600

RESUMEN

Highly flexible and superelastic aerogels at large deformation have become urgent mechanical demands in practical uses, but both properties are usually exclusive. Here a trans-scale porosity design is proposed in graphene nanofibrous aerogels (GNFAs) to break the trade-off between high flexibility and superelasticity. The resulting GNFAs can completely recover after 1000 fatigue cycles at 60% folding strain, and notably maintain excellent structural integrity after 10000 cycles at 90% compressive strain, outperforming most of the reported aerogels. The mechanical robustness is demonstrated to be derived from the trans-scale porous structure, which is composed of hyperbolic micropores and porous nanofibers to enable the large elastic deformation capability. It is further revealed that flexible and superelastic GNFAs exhibit high sensitivity and ultrastability as an electrical sensors to detect tension and flexion deformation. As proof, The GNFA sensor is implemented onto a human finger and achieves the intelligent recognition of sign language with high accuracy by multi-layer artificial neural network. This study proposes a highly flexible and elastic graphene aerogel for wearable human-machine interfaces in sensor technology.

7.
Bioact Mater ; 38: 45-54, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38699237

RESUMEN

Effective treatment of Parkinson's disease (PD), a prevalent central neurodegenerative disorder particularly affecting the elderly population, still remains a huge challenge. We present here a novel nanomedicine formulation based on bioactive hydroxyl-terminated phosphorous dendrimers (termed as AK123) complexed with fibronectin (FN) with anti-inflammatory and antioxidative activities. The created optimized AK123/FN nanocomplexes (NCs) with a size of 223 nm display good colloidal stability in aqueous solution and can be specifically taken up by microglia through FN-mediated targeting. We show that the AK123/FN NCs are able to consume excessive reactive oxygen species, promote microglia M2 polarization and inhibit the nuclear factor-kappa B signaling pathway to downregulate inflammatory factors. With the abundant dendrimer surface hydroxyl terminal groups, the developed NCs are able to cross blood-brain barrier (BBB) to exert targeted therapy of a PD mouse model through the AK123-mediated anti-inflammation for M2 polarization of microglia and FN-mediated antioxidant and anti-inflammatory effects, thus reducing the aggregation of α-synuclein and restoring the contents of dopamine and tyrosine hydroxylase to normal levels in vivo. The developed dendrimer/FN NCs combine the advantages of BBB-crossing hydroxyl-terminated bioactive per se phosphorus dendrimers and FN, which is expected to be extended for the treatment of different neurodegenerative diseases.

8.
Health Expect ; 27(3): e14059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38689509

RESUMEN

BACKGROUND: Shared decision-making (SDM) is a patient-centred approach to improve the quality of care. An essential requirement for the SDM process is to be fully aware of patient information needs. OBJECTIVES: Our study aimed to assess patient information needs for new antidiabetic medications using the best-worst scaling (BWS) experiment. METHODS: BWS tasks were developed according to a literature review and the focus group discussion. We used a balanced incomplete block design and blocking techniques to generate choice sets. The final BWS contains 11 attributes, with 6-choice scenarios in each block. The one-to-one, face-to-face BWS survey was conducted among type 2 diabetic patients in Jiangsu Province. Results were analyzed using count-based analysis and modelling approaches. We also conducted a subgroup analysis to observe preference heterogeneity. RESULTS: Data from 539 patients were available for analysis. The most desired information domain was the comparative effectiveness of new antidiabetic medications. It consists of the incidence of macrovascular complications, the length of extended life years, changes in health-related quality of life, the incidence of microvascular complications, and the control of glycated haemoglobin. Of all the attributes, the incidence of macrovascular complications was the primary concern. Patients' glycemic control and whether they had diabetes complications exerted a significant influence on their information needs. CONCLUSIONS: Information on health benefits is of critical significance for diabetic patients. Patients have different information needs as their disease progresses. Personalized patient decision aids that integrate patient information needs and provide evidence of new antidiabetic medications are worthy of being established. PATIENT OR PUBLIC CONTRIBUTION: Before data collection, a pilot survey was carried out among diabetic patients to provide feedback on the acceptability and intelligibility of the attributes.


Asunto(s)
Toma de Decisiones Conjunta , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Humanos , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , China , Masculino , Persona de Mediana Edad , Femenino , Grupos Focales , Anciano , Encuestas y Cuestionarios , Evaluación de Necesidades , Participación del Paciente , Adulto
9.
J Pharmacol Exp Ther ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719477

RESUMEN

Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are members of the nuclear receptor superfamily, which regulates various physiological and pathological processes. Phase separation is a dynamic biophysical process that biomacromolecules form liquid-like condensates, which have been identified as a contributor to many cellular functions, such as signal transduction and transcription regulation. However, the possibility of phase separation for CAR and PPARα remains unknown. This study explored the potential phase separation of CAR and PPARα. The computational analysis utilizing algorithms tools examining the intrinsically disordered regions (IDRs) of CAR and PPARα suggested a limited likelihood of undergoing phase separation. Experimental assays under varying conditions of hyperosmotic stress and agonist treatments confirmed the absence of phase separation for these receptors. Additionally, the optoDroplets assay, which utilizes blue light stimulation to induce condensate formation, showed that there was no condensate formation of the fusion protein of Cry2 with CAR or PPARα. Furthermore, phase separation of CAR or PPARα did not occur despite reduced target expression under hyperosmotic stress. In conclusion, these findings revealed that neither the activation of CAR and PPARα nor hyperosmotic stress induces phase separation of CAR and PPARα in cells. Significance Statement CAR and PPARα are key regulators of various functions in the body. This study showed that CAR and PPARα do not exhibit phase separation under hyperosmotic stress or after agonist-induced activation. These findings provide new insights into the CAR and PPARα biology and physiology.

10.
J Mater Chem B ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757190

RESUMEN

Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.

11.
Environ Int ; 188: 108743, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38749121

RESUMEN

Urban populations, especially women, are vunerable to exposure to airborne pollution, particularly inhalable particulates (PM10). Thus, more accurate measurement of PM10 levels and evaluating their health effects is critical for guiding policy to improve human health. Previous studies obtained personal PM10 with time-weighted average by air filter-based sampling (AFS), which ignores individual differences and behavioral patterns. Here, we used nasal filters instead of AFS to obtain actual inhaled PM10 under short-term exposure for urban dwelling women during a severe haze event in Beijing in 2016. The levels of six heavy metals such as As, Cd, Ni, Cr, Pb, and Co in PM10 were investigated, and carcinogenic and non-carcinogenic risks evaluated based on an adjusted US EPA health risk assessment model. The health endpoints for urban dwelling women were further assessed through an exposure-reponse model. We found that the hourly inhaled dose of PM10 obtained through the nasal filter was about 2.5-17.6 times that obtained by AFS, which also resulted in 4.41-11.30 times more morbidity than estimated by AFS (p < 0.05). Proximity to traffic emissions resulted in greater exposure to particulate matter (>18.8 µg/kg·h) and heavy metals (>2.2 ng/kg·h), and these populations are therefore at greatest risk of developing non-cancer (HI = 4.16) and cancer (Rt = 7.8 × 10-3) related morbities.

12.
PeerJ ; 12: e17176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560479

RESUMEN

The effects of nitrogen application or earthworms on soil respiration in the Huang-Huai-Hai Plain of China have received increasing attention. However, the response of soil carbon dioxide (CO2) emission to nitrogen application and earthworm addition is still unclear. A field experiment with nitrogen application frequency and earthworm addition was conducted in the Huang-Huai-Hai Plain. Results showed nitrogen application frequency had a significant effect on soil respiration, but neither earthworms nor their interaction with nitrogen application frequency were significant. Low-frequency nitrogen application (NL) significantly increased soil respiration by 25%, while high-frequency nitrogen application (NH), earthworm addition (E), earthworm and high-frequency nitrogen application (E*NH), and earthworm and low-frequency nitrogen application (E*NL) also increased soil respiration by 21%, 21%, 12%, and 11%, respectively. The main reason for the rise in soil respiration was alterations in the bacterial richness and keystone taxa (Myxococcales). The NH resulted in higher soil nitrogen levels compared to NL, but NL had the highest bacterial richness. The abundance of Corynebacteriales and Gammaproteobacteria were positively connected with the CO2 emissions, while Myxococcales, Thermoleophilia, and Verrucomicrobia were negatively correlated. Our findings indicate the ecological importance of bacterial communities in regulating the carbon cycle in the Huang-Huai-Hai Plain.


Asunto(s)
Myxococcales , Oligoquetos , Animales , Dióxido de Carbono , Glycine max , Nitrógeno/farmacología , Suelo , Productos Agrícolas
13.
Appl Opt ; 63(9): 2156-2166, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38568567

RESUMEN

Free space optical (FSO) communication systems experience turbulence-induced fading. As a possible solution, adaptive transmission, which adjusts transmitter parameters based on instantaneous channel state information (CSI), can be used. Most of the existing channel estimation methods ignore the impact of detection noise at the receiver, which will lead to additional estimation errors. In this paper, a joint estimation model based on convolutional neural networks (CNNs) is proposed to estimate detection noise and turbulence fading parameters. We obtained turbulence channel simulation data sets considering the background of detection noise based on the edge probability distribution function of the receive signal. The training of the CNN estimator is carried out through maximum pooling, adaptive learning rate, and regularization, ultimately accurately estimating channel characteristics based on the optimal output results of the network. The simulation results show that the proposed CNN joint estimator performs better in high-detection-noise environments compared with traditional maximum likelihood estimators, and it has better generalization ability in different real atmospheric environments.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38640920

RESUMEN

Gallium arsenide (GaAs) materials have the advantages of high electron mobility, electron saturation drift rate, and other irreplaceable semiconducting properties. They play an important role in the electronics, solar and other fields. However, during GaAs film sedimentary growth, As atoms can undergo segregation to form As8 clusters because of the influence of external factors, which affect the surface morphology and internal structure of these films. In this study, a series of investigations on the deposition and growth of GaAs crystal films were performed. Additionally, the deposition and growth of GaAs thin films were simulated using molecular dynamics. The influence of As8 clusters on the surface morphology and internal structure of GaAs films at different incidence angles, velocities and substrate temperatures was studied by using "defect analysis technology" and "diamond structure identification" in open source software, along with surface roughness and radial distribution function. Results show that with increasing incident angle, the number of As8 clusters decreases and film density increases. Increasing incident velocity increases the irregular movement of As8 clusters in air, and their deposition on the film surface affects the morphology of the film, the surface roughness increases first and then decreases. Additionally, we investigated the effect of different substrate temperatures on the film surface. Results show that at a substrate temperature of 1173 K, the number of As8 clusters in the film decreases or the As8 clusters disappear, heterogeneous nucleation occurs in the film, and the crystallization rate increases. Although the dislocation line associated with nucleation may affect the mechanical and optical properties of the film, it considerably reduces the annealing effort after the deposition and growth.

16.
World J Diabetes ; 15(3): 418-428, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591072

RESUMEN

BACKGROUND: The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is rapidly increasing, currently affecting approximately 25% of the global population. Liver fibrosis represents a crucial stage in the development of MAFLD, with advanced liver fibrosis elevating the risks of cirrhosis and hepatocellular carcinoma. Simple serum markers are less effective in diagnosing liver fibrosis compared to more complex markers. However, imaging techniques like transient elastography face limitations in clinical application due to equipment and technical constraints. Consequently, it is imperative to identify a straightforward yet effective method for assessing MAFLD-associated liver fibrosis. AIM: To investigate the predictive value of angiopoietin-like protein 8 (ANGPTL8) in MAFLD and its progression. METHODS: We analyzed 160 patients who underwent abdominal ultrasonography in the Endocrinology Department, Xiaogan Central Hospital affiliated to Wuhan University of Science and Technology, during September 2021-July 2022. Using abdominal ultrasonography and MAFLD diagnostic criteria, among the 160 patients, 80 patients (50%) were diagnosed with MAFLD. The MAFLD group was divided into the liver fibrosis group (n = 23) and non-liver fibrosis group (n = 57) by using a cut-off fibrosis-4 index ≥ 1.45. Logistical regression was used to analyze the risk of MAFLD and the risk factors for its progression. Receiver operating characteristic curves were used to evaluate the predictive value of serum ANGPTL8 in MAFLD and its progression. RESULTS: Compared with non-MAFLD patients, MAFLD patients had higher serum ANGPTL8 and triglyceride-glucose (TyG) index (both P < 0.05). Serum ANGPTL8 (r = 0.576, P < 0.001) and TyG index (r = 0.473, P < 0.001) were positively correlated with MAFLD. Serum ANGPTL8 was a risk factor for MAFLD [odds ratio (OR): 1.123, 95% confidence interval (CI): 1.066-1.184, P < 0.001). Serum ANGPTL8 and ANGPTL8 + TyG index predicted MAFLD [area under the curve (AUC): 0.832 and 0.886, respectively; both P < 0.05]. Compared with MAFLD patients without fibrosis, those with fibrosis had higher serum ANGPTL8 and TyG index (both P < 0.05), and both parameters were positively correlated with MAFLD-associated fibrosis. Elevated serum ANGPTL8 (OR: 1.093, 95%CI: 1.044-1.144, P < 0.001) and TyG index (OR: 2.383, 95%CI: 1.199-4.736, P < 0.013) were risk factors for MAFLD-associated fibrosis. Serum ANGPTL8 and ANGPTL8 + TyG index predicted MAFLD-associated fibrosis (AUC: 0.812 and 0.835, respectively; both P < 0.05). CONCLUSION: The serum levels of ANGPTL8 are elevated and positively correlated with MAFLD. They can serve as predictors for the risk of MAFLD and liver fibrosis, with the ANGPTL8 + TyG index potentially exhibiting even higher predictive value.

17.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611820

RESUMEN

The level of fluoride ions (F-) in the human body is closely related to various pathological and physiological states, and the rapid detection of F- is important for studying physiological processes and the early diagnosis of diseases. In this study, the detailed sensing mechanism of a novel high-efficiency probe (PBT) based on 2-(2'-hydroxyphenyl)-benzothiazole derivatives towards F- has been fully investigated based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. F- attacks the O-P bond of PBT to cleavage the dimethylphosphinothionyl group, and the potential products were evaluated by Gibbs free energy and spectroscopic analyses, which ultimately identified the product as HBT-Enol1 with an intramolecular hydrogen bond. Bond parameters, infrared vibrational spectroscopy and charge analysis indicate that the hydrogen bond is enhanced at the excited state (S1), favoring excited state intramolecular proton transfer (ESIPT). The mild energy barrier further evidences the occurrence of ESIPT. Combined with frontier molecular orbital (FMO) analysis, the fluorescence quenching of PBT was attributed to the photoinduced electron transfer (PET) mechanism and the fluorescence turn-on mechanism of the product was attributed to the ESIPT process of HBT-Enol1.

18.
Quant Imaging Med Surg ; 14(4): 3018-3032, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617148

RESUMEN

Background: Although it is known that mitral regurgitation (MR) in patients with myocardial infarction (MI) may increase the right ventricular (RV) afterload, leading to RV dysfunction, the exact detrimental effects on RV function and myocardial peak strain remain unresolved. In this study, we assessed the impact of MR on the impairment of RV myocardial deformation in patients with MI and explored the independent influential factors of RV peak strain. Methods: A total of 199 MI participants without or with MR were retrospectively assessed in this study. The cardiovascular magnetic resonance examination protocol included a late gadolinium-enhanced (LGE) imaging technique and a cine-balanced steady-state free precession sequence. Statistical tests, including two independent sample t-test or Mann-Whitney U-test, analysis of variance, Kruskal-Wallis test, and multiple linear regression analysis models were performed. Results: The MI (MR+) group exhibited significantly lower RV strain parameters in the radial, circumferential and longitudinal directions when compared to the control and the MI (MR-) groups (both P<0.05). The RV global longitudinal peak strain (GLPS) in the MI group significantly decreased when compared with that in the control group (P<0.05). As moderate-severe MR worsened in patients with MI, RV myocardial global peak strain and the peak systolic strain rate (PSSR) gradually decreased. Multiple linear regression analysis revealed that left ventricular (LV) GLPS, triglycerides, and age were independently correlated with RV GLPS (all P<0.05). RV end-systolic volume (RVESV) acted as an independent association factor for RV global peak strain. Conclusions: MR may exacerbate the impairment of RV peak strain and functions in patients with MI. LV GLPS was positively correlated with RV GLPS. However, RVESV, triglycerides, and age acted as independent risk factors associated with worsening RV GLPS.

19.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622116

RESUMEN

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Asunto(s)
Factor Rho , Factores de Transcripción , Factores de Transcripción/metabolismo , Virulencia/genética , Factor Rho/genética , Factor Rho/metabolismo , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Bacterias/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
20.
Sci Total Environ ; 930: 172671, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38653407

RESUMEN

Soil acidification often suppresses microbial growth and activities, resulting in a negative impact on soil organic carbon (C) decomposition. While the detrimental effects of acidification on soil and plant properties have been extensively studied, less attention has been paid on the shifts in soil microbial communities and their influences of the decomposition of organic C with different chemical complexities. Taking advantage of an acid addition experiment in a Tibetan alpine meadow, here we examined the response of soil microbial communities to soil acidification and microbial effect on the decomposition of organic C with different chemical complexities (i.e., glucose and lignin, representing labile and recalcitrant C respectively). We found that soil acidification had no impact on microbial respiration and microbial abundance even though it decreased bacterial diversity significantly. Soil acidification increased the relative abundance of some microbial taxa, like Alphaproteobacteria and Acidobacteriia in bacteria increased by 36 %, 284 %, and Eurotiomycetes, Sordariomycetes and Leotiomycetes in fungi increased by 145 %, 279 % and 12.7-fold, but decreased the relative abundance of Acidimicrobiia by 33 % in highest acid addition treatment. Changes in microbial communities (bacterial and fungal community composition, the diversity of bacterial community and the ratio of fungi to bacteria) are significantly related to the decomposition of glucose and lignin. More specifically, soil acidification decreased the decomposition of glucose but increased the decomposition of lignin, indicating a trade-off between the decomposition of labile and recalcitrant soil organic C under soil acidification. Overall, shifts in microbial communities under soil acidification might be accompanied by an increased ability to break down more recalcitrant C. This trade-off between the decomposition of labile and recalcitrant C may change soil C quality under future acid deposition scenarios.


Asunto(s)
Glucosa , Pradera , Lignina , Microbiota , Microbiología del Suelo , Suelo , Suelo/química , Glucosa/metabolismo , Bacterias , Concentración de Iones de Hidrógeno , Tibet , Hongos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA