Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Funct ; 15(15): 8128-8142, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39011745

RESUMEN

The degradation of sodium alginate by human gut microbiota was found to be retarded via calcium cross-linking in our previous study. We hypothesized that the guluronic acid block (GB) on the alginate molecule might be the key structural region affecting alginate degradation by the gut microbiota when cross-linked with calcium. This study aims to prove this hypothesis by studying the structural features of the cross-linked GB on its in vitro fecal fermentation behaviors concerning the aspects of total carbohydrate contents, monosaccharide contents, short-chain fatty acids production, calcium state variations, and structural variations. Herein, GB isolated from sodium alginate was cross-linked under ranges of molar ratios of [Ca2+]/[-COOH] that further restricted the degradation by gut microbiota similar to the cross-linked alginates. First, total carbohydrate contents, short-chain fatty acids production, monosaccharides contents, and calcium state analyses confirmed that the degradation of GB by gut microbiota was restricted by calcium cross-linking. Furthermore, the tracking analysis of structural variations during in vitro fermentation revealed that the "granules" structure could further restrict degradation by the gut microbiota, leaving more cross-linked GB fragments surviving in comparison to the "networks" structure. In addition, Bacteroides xylanisolvens showed a significant positive correlation to the "cross-linking porosity (R = 0.825, p < 0.001), which supported our previous findings on fermentation behaviors of cross-linked alginate. Together, guluronic acid blocks are the key structural regions that retard the degradation of sodium alginate by the gut microbiota when cross-linked with calcium.


Asunto(s)
Alginatos , Calcio , Colon , Fermentación , Microbioma Gastrointestinal , Ácidos Hexurónicos , Alginatos/química , Humanos , Colon/metabolismo , Colon/microbiología , Calcio/metabolismo , Ácidos Hexurónicos/química , Heces/microbiología , Ácidos Grasos Volátiles/metabolismo
2.
Foods ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928837

RESUMEN

Probiotics have become increasingly recognized for their potential health-promoting properties; however, the viability of probiotics can be affected by storage and transportation processes as well as the stressful environment of the human digestive tract, preventing them from achieving effective concentration (107 CFU/mL). In this regard, the embedding technology of probiotics provides an effective protection method. Dextran-based water in water (W/W) emulsion loaded with Lactobacillus plantarum was used as spinning solution to prepare Lactobacillus plantarum-loaded electrospun fibers. The structure of the W/W emulsion and the electrospun fibers was charactered. Lactobacillus plantarum were uniformly embedded in the internal phase of the W/W emulsion and the loading efficiency was 9.70 ± 0.40 log CFU/g. After 240 min digestion in the gastrointestinal tract, and temperature treatment in 65 °C and 72 °C, the loaded probiotics maintained high activity. Even after 5 days of storage in room temperature and 4 °C, the loaded probiotic activity levels remained high, with counts >8 log CFU/g. These results suggest that probiotics encapsulated by emulsion electrospinning could be potentially delivered in a novel food delivery system used in the future food industry.

3.
Nat Commun ; 15(1): 4404, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782952

RESUMEN

Residential homes and light commercial buildings usually require substantial heat and electricity simultaneously. A combined heat and power system enables more efficient and environmentally friendly energy usage than that achieved when heat and electricity are produced in separate processes. However, due to financial and space constraints, residential and light commercial buildings often limit the use of traditional large-scale industrial equipment. Here we develop a micro-combined heat and power system powered by an opposed-piston engine to simultaneously generate electricity and provide heat to residential homes or light commercial buildings. The developed prototype attains the maximum AC electrical efficiency of 35.2%. The electrical efficiency breaks the typical upper boundary of 30% for micro-combined heat and power systems using small internal combustion engines (i.e., <10 kW). Moreover, the developed prototype enables maximum combined electrical and thermal efficiencies greater than 93%. The prototype is optimally designed for natural gas but can also run renewable biogas and hydrogen, supporting the transition from current conventional fossil fuels to zero carbon emissions in the future. The analysis of the unit's decarbonization and cost-saving potential indicate that, except for specific locations, the developed prototype might excel in achieving decarbonization and cost savings primarily in US northern and middle climate zones.

4.
Adv Mater ; 36(25): e2314097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38466829

RESUMEN

Planarly aligning 2D platelets is challenging due to their additional orientational freedom compared to 1D materials. This study reports a sequential dual-alignment approach, employing an extrusion-printing-induced shear force and rotating-magnetic-field-induced force couple for platelet planarly alignment in a yield-stress support bath. It is hypothesized that the partial alignment induced by a directional shear force facilitates subsequent axial rotation of the platelets for planar alignment under an external force couple, resulting in a synergistic alignment effect. This sequential dual-alignment approach achieves better planar alignment of 2D modified hexagonal boron nitride (mhBN). Specifically, the thermal conductivity of the 40 wt% mhBN/epoxy composite is significantly higher (692%) than that of unaligned composites, surpassing the cumulative effect of individual methods (only 133%) with a 5 times more synergistic effect. For 30, 40, and 50 wt% mhBN composites, the thermal conductivity values (5.9, 9.5, and 13.8 W m-1 K-1) show considerable improvement compared to the previously reported highest values (5.3, 6.6, and 8.6 W m-1 K-1). Additionally, a 3D mhBN/epoxy heat sink is printed and evaluated to demonstrate the feasibility of device fabrication. The approach enables the planar alignment of electrically or thermally conducting 2D fillers during 3D fabrication.

5.
Anal Chim Acta ; 1288: 342196, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220264

RESUMEN

Albendazole (ABZ), a benzimidazole-based anthelmintic, is widely used to treat helminth infections. The extensive and improper use of ABZ may cause drug residues in animal-origin food and anthelmintics resistance, which potentially threaten human health. Meanwhile, albendazole sulfoxide (ABZSO), a metabolite of ABZ, also exhibits toxic effects. Therefore, the detection of ABZ and ABZSO in animal-derived food is significantly necessary. Herein, a dual-emission europium fluorescent sensor (EuUHC-30) was rationally designed and constructed. EuUHC-30 exhibits high selectivity and sensitivity towards ABZ and ABZSO with a detection limit of 0.10 and 0.13 µM, respectively. Furthermore, EuUHC-30 was successfully applied for quantification of ABZ and ABZSO in milk and pig kidney, which were verified by HPLC analysis. Moreover, a smartphone-assisted EuUHC-30 fluorescent paper sensor was fabricated for the practical determination of ABZ and ABZSO in real food. Overall, this work provides a visual, rapid, and intelligent method for the detection of ABZ and ABZSO in animal-origin food.


Asunto(s)
Antihelmínticos , Estructuras Metalorgánicas , Animales , Humanos , Porcinos , Albendazol , Antihelmínticos/metabolismo , Antihelmínticos/uso terapéutico , Cromatografía Líquida de Alta Presión
6.
Int J Biol Macromol ; 256(Pt 1): 128306, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37995787

RESUMEN

This study purposed to develop konjac glucomannan (KGM) based antimicrobial coatings containing Litsea cubeba essential oil nanoemulsion (LNE) for citruses preservation. Physical stability, rheological, structural and antimicrobial properties of the coating solutions were investigated, along with the release characteristics of Litsea cubeba essential oil (LCO). Results showed that the coating solutions displayed shear thinning behavior. The oil droplets were distributed homogeneously in KGM phase with good stability. The coating structure became loose with increasing LNE content due to LNE interfering with molecular interactions and entanglement of KGM. The coating solutions showed stronger antibacterial activity against Escherichia coli than against Staphylococcus aureus and were effective in inhibiting the growth of Penicillium italicum on citrus surfaces. KGM-LNE 10 negatively affected citruses due to phytotoxicity caused by high levels of LCO. LCO was released slowly and continuously from the coatings, and its release was faster in deionized water than in an ethanol-water solution. KGM-LNE 2.5 coated citruses had the least weight loss, the greatest hardness, and kept the minimum changes in total soluble solids, total acid and vitamin C content, implying that KGM-LNE 2.5 best maintained the quality of citruses. The findings suggest that KGM-based coatings containing LNE have high potential for citruses preservation.


Asunto(s)
Litsea , Aceites Volátiles , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Agua/química , Mananos/farmacología , Mananos/química
7.
Food Res Int ; 174(Pt 1): 113552, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986431

RESUMEN

Slow fermentable dietary fibers can be utilized by human gut microbiota in the distal region of the colon and thus exert a sufficient short-chain fatty acids (SCFAs) supplement in the distal region of the human colon. Alginate (Alg) based microgels are widely fabricated and used to control their digestion by digestive enzymes releasing active substances site-specifically. Herein, sodium alginate microgels with gradient calcium-ion (Ca2+) cross-linking densities were developed, restricting their degradation by gut microbiota. Alg microgels were prepared using high-speed shearing after Alg was cross-linked with 10, 40, and 60 mmol/L Ca2+, respectively (named 10-Alg, 40-Alg, and 60-Alg). The fluorescence and atomic force microscopic results showed that the 40-Alg particle has the densest structure among the three cross-linked Alg. In vitro human fecal fermentation results revealed that the Ca2+ cross-linking exerted more restricting effects than delaying effects on the fermentation of Alg, and the 40-Alg exhibited the slowest fermentation rate and the least fermentation extent, by characterizing the residual total carbohydrate content, residual monosaccharide content, pH, and total short-chain fatty acids. The 16S rRNA gene sequencing results indicated that cross-linking structures shaped a high specifical Bacteroides-type microbial community and that OTU205 (Bacteroides_xylanisolvens) highly correlated to the cross-linking density (R = 0.65, p = 0.047). In sum, Ca2+ cross-linking generated a dense and compact structure of sodium alginate that facilitated a more restricted fermentation property and specificity-targeting microbial community structure in comparison to the original sodium alginate.


Asunto(s)
Alginatos , Microgeles , Humanos , Fermentación , Alginatos/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ácidos Grasos Volátiles/metabolismo
8.
Int J Biol Macromol ; 253(Pt 8): 127509, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37865370

RESUMEN

Hexadecyltrimethylammonium bromide complexed alginate-Ca2+ microgels (C/AMGs) were developed as emulsifiers, which shown remarkably improved emulsifying performance than non-complexed alginate-Ca2+ microgels (AMGs) in previous study. This work focus on the impact of deformability on the emulsifying performance of C/AMGs. By regulating alginate concentration (1.0-4.0 wt%), microgels with different deformability were prepared. Deformability was proved to have great influence on the emulsifying performance of C/AMGs, which was evaluated by Langmuir trough measurements, emulsion appearance, centrifugation stability, digestive behavior, and oxidative stability. Particle size and SEM images indicated microgels prepared with lower alginate concentration are more deformable. C/AMGs (2.0 wt%) exhibits the best emulsifying performance, which could be ascribed to the appreciated deformability and mechanical strength. Digestive behavior and oxidative stability of alginate-Ca2+ microgel (2.0 wt%) stabilized emulsions were further investigated. Compared with alginate-Ca2+ microgel (2.0 wt%) stabilized emulsions, C/AMGs (2.0 wt%) stabilized emulsions shown delayed lipid digestion and lower POV. Results of this work supporting that Mickering mechanism have potential in fabricating functional emulsions based on natural polysaccharides.


Asunto(s)
Alginatos , Microgeles , Cetrimonio , Emulsiones , Emulsionantes , Tamaño de la Partícula , Agua
9.
Food Res Int ; 170: 112973, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316056

RESUMEN

Oxygen diffusion played an important role in the lipid oxidation of food emulsions. In this study, a simple method was developed to quantitatively observe the oxygen diffusion in the oil-water biphasic system, and it was further applied to investigate the relationship between the oxygen diffusion and lipid oxidation in O/W emulsions. Various factors that related to the emulsion oxidation were considered, from their influence on the oxygen diffusion and lipid oxidation in the emulsions. Results showed that there was obvious correlation between the oxygen diffusion and lipid oxidation in O/W emulsions, which reveals the inhibition of oxygen diffusion could apparently slow down the lipid oxidation. Moreover, the changes of oil phase, water phase and interfacial layer of the emulsions, which were related to the oxygen diffusion, could improve the oxidative stability of the emulsions effectively. Our findings are helpful for deep understanding the mechanisms of the lipid oxidation in food emulsions.


Asunto(s)
Metabolismo de los Lípidos , Oxígeno , Emulsiones , Agua , Lípidos
10.
Foods ; 12(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37048217

RESUMEN

As a simple and convenient technology to fabricate micron-to-nanoscale fibers with controllable structure, electrostatic spinning has produced fiber films with many natural advantages, including a large specific surface area and high porosity. Maize zein, as a major storage protein in corn, showed high hydrophobicity and has been successfully applied as a promising carrier for encapsulation and controlled release in the pharmaceutical and food areas. Proteins exhibit different physical and chemical properties at different pH values, and it is worth investigating whether this change in physical and chemical properties affects the properties of electrospun fiber films. We studied the pH effects on zein solution rheology, fiber morphology, and film properties. Rotational rheometers were used to test the rheology of the solutions and establish a correlation between solution concentration and fiber morphology. The critical concentrations calculated by the cross-equation fitting model were 17.6%, 20.1%, 20.1%, 17.1%, and 19.5% (w/v) for pH 4, 5, 6, 7, and 8, respectively. The secondary structure of zein changed with the variation in solution pH. Furthermore, we analyzed the physical properties of the zein films. The contact angles of the fiber membranes prepared with different pH spinning solutions were all above 100, while zein films formed by solvent evaporation showed hydrophilic properties. The results indicated that the rheological properties of zein solutions and the surface properties of the film were affected by the pH value. This study showed that zein solutions can be stabilized to form electrospun fibers at a variety of pH levels and offered new opportunities to further enhance the encapsulation activity of zein films for bioactive materials.

11.
Int J Biol Macromol ; 241: 124565, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37100331

RESUMEN

Agarose microgels were prepared with bottom-up approach, and emulsifying properties of agarose microgels were investigated. Physical properties of microgels are varied with agarose concentration, and further affect the emulsifying performance of microgels. Enhanced surface hydrophobicity index and decreased particle size of microgels were recorded with the increasing of agarose concentration, which were conducive to emulsifying properties of microgels. Improved interfacial adsorption of microgels was evidenced by Dynamic surface tension and SEM. However, microscopic morphology of microgel at O/W interface indicated that increasing agarose concentration could weaken the deformability of microgels. The influence of external conditions (pH and NaCl) on the physical properties of microgels were investigated, and their effects on emulsion stability were evaluated. Compared with acidification, NaCl was appeared to be more destructive to emulsion stability. Results indicated acidification and NaCl could decrease surface hydrophobicity index of microgels, but there was differentiation in the variation of particle size. It was inferred that deformability of microgels could make contribution to the stability of emulsion. This study verified that microgelation was a feasible scheme to improve the interfacial properties of agarose, and the influence of agarose concentration, pH, and NaCl on the emulsifying performance of microgels was investigated.


Asunto(s)
Microgeles , Microgeles/química , Emulsiones/química , Sefarosa , Cloruro de Sodio
12.
Food Res Int ; 164: 112369, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737956

RESUMEN

Oleogels containing less saturated and trans-fats were considered as an ideal option to replace the solid fats in foods. In this research, oleogel was fabricated by dispersing soy fiber particles (SFP) in soy oil, and further it was used in bread preparation. Effect of the particle size, particle content and the second fluid content on the formation of oleogels were evaluated, based on the appearance and rheological properties. Results showed that the suspension of SFP in soy oil (24%, w/w) could be transformed into gel-like state, upon the addition of the second fluid. The SFP based networks were dominated by the capillary force which was originated from the second fluid. The rheological properties and yield stress of the oleogels could be modulated by particle size and particle content of SFP in oil phase, as well as the second fluid content in the system. When the oleogels were applicated in bread preparation, a layered structure could be formed in the bread, indicating the possibility of replacing the solid fats in bakery products by our oleogels. Our results offered a feasibility approach for oil structuring with natural raw materials, and developed a new approach to replace the solid fats in foods.


Asunto(s)
Compuestos Orgánicos , Aceite de Soja , Compuestos Orgánicos/química , Aceite de Soja/química , Pan , Fenómenos Químicos
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122338, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36657288

RESUMEN

Autophagy is the controlled breakdown of cellular components that dysfunctional or nonessential, and the decomposition products are further recycled and synthesized for the normal physiological activities of cells. Lysosomal autophagy has been implicated in cancer, neurological disorders, Parkinson's disease, etc. Therefore, it is necessary to develop a fluorescent probe that can clearly describe the process of lysosomal autophagy. However, there are currently limited fluorescent probes for ratiometric monitoring of the autophagic process in dual channels. To solve this problem, a fluorescent probe based on spiropyran with lysosomal targeting and pH response for ratiometric monitoring the autophagy process of lysosomes were designed. The sensitive response of the probe to pH in vitro was verified by UV and fluorescence spectrum tests. Meanwhile, the probe demonstrated the ability to monitor the intracellular pH fluctuations. In addition, the application of Lyso-SD in the field of anti-counterfeiting has been proposed based on the obvious photoluminescence ability of Lyso-SD under UV irradiation.


Asunto(s)
Colorantes Fluorescentes , Lisosomas , Humanos , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Autofagia , Células HeLa
14.
Alzheimer Dis Assoc Disord ; 36(4): 374-381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35984740

RESUMEN

Worldwide, it is estimated that around 50 million older adults have Alzheimer's disease and related dementias (ADRD). Cognitive deficits associated with ADRD may affect a driver's perception and decision-making and potentially cause safety concerns. Despite much research, there lacks a comprehensive cognitive evaluation to determine the driving capability of a person with ADRD and it is unclear what are the most effective training and interventions that help to enhance driving performance for these individuals. The purpose of this article is to conduct a comprehensive literature survey to review and summarize studies of driving performance evaluation and intervention for people with ADRD and discuss perspectives for future studies. Although many studies have investigated the correlations between driving behaviors and cognitive performances for people with ADRD, it remains unclear how driving behaviors and cognitive performances are associated with psychophysiological measures. We discussed the need to develop regular driving evaluation and rehabilitation protocol for people with ADRD. We also highlighted the potential benefit to combine driving tests with psychophysiological measures to assist in characterizing personalized cognitive evaluation in the behavioral evaluation process.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Humanos , Enfermedad de Alzheimer/psicología
15.
Molecules ; 27(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35807365

RESUMEN

Roasting is crucial for producing Yuan An yellow tea (YAYT) as it substantially affects sensory quality. However, the effect of roasting time on YAYT flavor quality is not clear. To investigate the effect of roasting time on the sensory qualities, chemical components, odor profiles, and metabolic profile of YAYTs produced with 13 min roasting, 16 min roasting, 19 min roasting, 22 min roasting, and 25 min roasting were determined. The YAYTs roasted for 22 min got higher sensory scores and better chemical qualities, such as the content of gallocatechin (GC), gallocatechin gallate (GCG), free amino acids, solutable sugar, meanwhile the lightness decreased, the hue of tea brew color (b) increased, which meant the tea brew got darker and yellower. YAYTs roasted for 22 min also increased the contents of key odorants, such as benzaldehyde, nonanal, ß-cyclocitral, linalool, nerol, α-cedrol, ß-ionone, limonene, 2-methylfuran, indole, and longiborneol. Moreover, non-targeted metabolomics identified up to 14 differentially expressed metabolites through pair-wise comparisons, such as flavonoids, phenolic acids, sucrose, and critical metabolites, which were the main components corresponding to YAYT roasted for 22 min. In summary, the current results provide scientific guidance for the production of high quality YAYT.


Asunto(s)
Gusto , Compuestos Orgánicos Volátiles , Calor , Odorantes/análisis , Té/química , Compuestos Orgánicos Volátiles/análisis
16.
Artículo en Inglés | MEDLINE | ID: mdl-35815268

RESUMEN

Objective: The aim of the study is to investigate the role and possible mechanism of fascin-1 (FSCN1) in the invasion, migration, glycolysis, and epithelial-mesenchymal transition (EMT) of prostate cancer. Methods: Real-time quantitative polymerase chain reaction (qRT-PCR) was utilized to determine the mRNA expression level of FSCN1 in prostate cancer tissues and prostate cancer cells PC-3 and DU145. The transwell and the scratch test were applied to detect the invasion and migration abilities of cells, respectively. A metabolic assay was used for measuring the glucose consumption, lactate production, and the extracellular acidification rate (ECAR) in cells; western blot was used for checking FSCN1, EMT, and yes-associated protein/transcriptional co-activators with the PDZ-binding motif (YAP/TAZ) signaling pathway-related protein expression level in cells or tissues. Results: FSCN1 was significantly highly expressed in prostate cancer tissues and cells. On the one hand, interference with the expression of FSCN1 could inhibit the invasion, migration, EMT, and glycolysis of prostate cancer cells. On the other hand, overexpression of FSCN1 promoted the invasion, migration, EMT, and glycolysis of prostate cancer cells. Besides, further mechanistic studies revealed that FSCN1 could activate the YAP/TAZ signaling pathway in prostate cancer cells. Conclusion: FSCN1 promotes invasion, migration, EMT, and glycolysis in prostate cancer cells by activating the YAP/TAZ signaling pathway. FSCN1 may be used as a biomarker for the diagnosis or treatment in prostate cancer.

17.
Food Chem ; 388: 132970, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35483281

RESUMEN

Flavour is a crucial sensory element that determines the consumers' preference for food and beverages. In this study, we determined the effects of complex gum arabic (GA) and tannic acid (TA) on the aroma release of flavour oil emulsions in vitro by simulating oral processing conditions. GA and TA were used to stabilize flavour oil emulsions. Visualization of in vitro retention using ex vivo porcine tongue, detection of aroma release in the model mouth, and sensory evaluation of flavour emulsions were performed to determine the effect of TA and GA. The results indicated that the retention of emulsions and the release of aroma compounds were modulated by TA and GA, which could be because of interactions that occurred between GA and TA in emulsions and mucins on the tongue. GA enhanced aroma release, whereas TA contributed to the retention or slow release of target aroma compounds.


Asunto(s)
Acacia , Odorantes , Animales , Emulsiones , Aromatizantes , Goma Arábiga , Odorantes/análisis , Porcinos , Taninos
18.
Entropy (Basel) ; 24(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35327893

RESUMEN

In this paper, we propose a new positivity-preserving finite volume scheme with fixed stencils for the nonequilibrium radiation diffusion equations on distorted meshes. This scheme is used to simulate the equations on meshes with both the cell-centered and cell-vertex unknowns. The cell-centered unknowns are the primary unknowns, and the element vertex unknowns are taken as the auxiliary unknowns, which can be calculated by interpolation algorithm. With the nonlinear two-point flux approximation, the interpolation algorithm is not required to be positivity-preserving. Besides, the scheme has a fixed stencil and is locally conservative. The Anderson acceleration is used for the Picard method to solve the nonlinear systems efficiently. Several numerical results are also given to illustrate the efficiency and strong positivity-preserving quality of the scheme.

19.
Mol Med Rep ; 24(6)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34581421

RESUMEN

Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system with a poor prognosis and high mortality rate. The increasing incidence of RCC poses a serious threat to human health. It is well­documented that rhomboid domain­containing protein 1 (RHBDD1) plays a vital role in cancer progression. The present study was designed to identify the biological functions of RHBDD1 in RCC and investigate the underlying regulatory mechanism, aiming to explore the novel molecular therapeutic targets for RCC. The protein and mRNA expression levels of RHBDD1 in normal renal tubule epithelium and human RCC cell lines were analyzed using western blotting and reverse transcription­quantitative PCR. Cell proliferation was determined using Cell Counting Kit­8 assays. Wound healing and Transwell assays were performed to determine cell migration and invasion, respectively. In addition, key proteins related to migration, invasion and epithelial­mesenchymal transition (EMT), such as matrix metalloproteinase (MMP)2, MMP9, MMP13, E­cadherin, N­cadherin, vimentin and Slug, were analyzed using western blotting. In addition, the EGFR/AKT signaling pathway was further studied using western blotting to determine the potential molecular mechanism. The results of the present study revealed that RHBDD1 expression levels were significantly upregulated in RCC cell lines. The knockdown of RHBDD1 inhibited cell proliferation, migration, invasion and EMT, while the overexpression of RHBDD1 promoted cell proliferation, migration, invasion and EMT in RCC. In addition, the knockdown of RHBDD1 suppressed the activation of the EGFR/AKT signaling pathway, while the overexpression of RHBDD1 activated the EGFR/AKT signaling pathway. Moreover, these stimulatory effects of RHBDD1 overexpression on RCC progression and the EGFR/AKT signaling pathway were partly reversed by gefitinib, an EGFR inhibitor. In conclusion, the findings of the present study suggested that RHBDD1 may be a crucial regulator of RCC by modulating the EGFR/AKT signaling pathway. The present study may provide a theoretical basis and potential targets for RCC treatment.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Serina Endopeptidasas/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina Endopeptidasas/genética , Transducción de Señal , Vimentina/metabolismo
20.
Micron ; 150: 103146, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34547637

RESUMEN

In present work, the effect of CeO2 addition on the crack susceptibility, microstructure, phase composition, solute segregation and microhardness of Ni60 cladding layer was investigated. The coatings were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and microscopic vickers hardness tester. The results show that main phase composition of Ni60 cladding layer are Ni3Fe, Ni3V, Ni3B, Cr23C6, Fe5C2. The microhardness of the cladding layers from the surface to the substrate is gradually decreased with increasing depth of the cladding layer. With increasing addition of CeO2, the diffraction peak of XRD is shifted to the left, indicating the lattice distortion in the phases of the coating. Compared with other cladding layers with different contents of CeO2, the solute distribution of Ni60 cladding layer containing 4.0 % CeO2 is more uniform, and the cross-section structure is more compact and homogeneous. The results show that the addition of 4.0 % CeO2 can effectively inhibit the cracks and porosity, promote grain refinement, and improve the microstructure homogeneity in the Ni60 cladding layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...