Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(14): e2310849, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185468

RESUMEN

Flexible and adaptable polymer composites with high-performance reliability over wide temperature range are imperative for various applications. However, the distinct filler-matrix thermomechanical behaviors often cause severe structure damage and performance degradation upon large thermal shock. To address this issue, a general strategy is proposed to construct leakage-free, self-adaptive, stable percolation networks in polymer composites over wide temperature (77-473 K) with biphasic Ga35In65 alloy. The in situ micro-CT technology, for the first time, reveals the conformable phase transitions of Ga35In65 alloys in the polymer matrix that help repair the disruptive conductive networks over large temperature variations. The cryo-expanded Ga compensates the disruptive carbon networks at low temperatures, and flowable Ga and melted In at high temperatures conformably fill and repair the deboned interfaces and yielded crevices. As a proof-of-concept, this temperature-resistant composite demonstrates superb electrical conductivity and electromagnetic interference shielding properties and stability even after a large temperature shock (ΔT = 396 K). Furthermore, the superiority of the construction of temperature self-adaptive networks within the composite enables them for additive manufacturing of application-oriented components. This work offers helpful inspiration for developing high-performance polymer composites for extreme-temperature applications.

2.
Cancer Res ; 84(3): 372-387, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37963207

RESUMEN

Neuronal activity can drive progression of high-grade glioma by mediating mitogen production and neuron-glioma synaptic communications. Glioma stem cells (GSC) also play a significant role in progression, therapy resistance, and recurrence in glioma, which implicates potential cross-talk between neuronal activity and GSC biology. Here, we manipulated neuronal activity using chemogenetics in vitro and in vivo to study how it influences GSCs. Neuronal activity supported glioblastoma (GBM) progression and radioresistance through exosome-induced proneural-to-mesenchymal transition (PMT) of GSCs. Molecularly, neuronal activation led to elevated miR-184-3p in neuron-derived exosomes that were taken up by GSCs and reduced the mRNA N6-methyladenosine (m6A) levels by inhibiting RBM15 expression. RBM15 deficiency decreased m6A modification of DLG3 mRNA and subsequently induced GSC PMT by activating the STAT3 pathway. Loss of miR-184-3p in cortical neurons reduced GSC xenograft growth, even when neurons were activated. Levetiracetam, an antiepileptic drug, reduced the neuronal production of miR-184-3p-enriched exosomes, inhibited GSC PMT, and increased radiosensitivity of tumors to prolong survival in xenograft mouse models. Together, these findings indicate that exosomes derived from active neurons promote GBM progression and radioresistance by inducing PMT of GSCs. SIGNIFICANCE: Active neurons secrete exosomes enriched with miR-184-3p that promote glioblastoma progression and radioresistance by driving the proneural-to-mesenchymal transition in glioma stem cells, which can be reversed by antiseizure medication levetiracetam.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroARNs , Humanos , Animales , Ratones , Glioblastoma/patología , Neoplasias Encefálicas/patología , Levetiracetam/metabolismo , Levetiracetam/uso terapéutico , Células Madre Neoplásicas/patología , Glioma/patología , Neuronas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética
3.
Environ Sci Pollut Res Int ; 31(1): 27-42, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38017216

RESUMEN

Mineral fertilizers are a new type of sustainable fertilizers, containing natural ores as the primary raw material with various nutrients and organic matters. This study combines two methods of bibliometric analysis to comprehensively review the progress of mineral fertilizers from 2000 to 2021. The results showed that the research on mineral fertilizers has increased in the past 21 years, especially after 2014. Developed countries studied mineral fertilizers more extensively than developing countries, but some developing countries, such as China and India, are also paying attention to this area in recent years. Chinese Academic of Sciences, Agriculture and Agri-Food Canada, and Chinese Academy of Agricultural Sciences were the main publishing institutions. Nutrient elements, changes in soil properties, and the effects on promoting crop growth were the main contents of the research. Still, such issues as bioremediation, soil environment improvement, and crop resistance are becoming hot spots. The field of mineral fertilizers showed a strong interdisciplinary nature and an increasingly comprehensive research perspective. The goal is that this synthesis will be used as a starting point for a broader study on responsible environmental management and research on improving fertilizer use efficiency.


Asunto(s)
Fertilizantes , Suelo , Fertilizantes/análisis , Agricultura/métodos , Minerales , Bibliometría
4.
Proc Natl Acad Sci U S A ; 120(33): e2203828120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549298

RESUMEN

Cellular omics such as single-cell genomics, proteomics, and microbiomics allow the characterization of tissue and microbial community composition, which can be compared between conditions to identify biological drivers. This strategy has been critical to revealing markers of disease progression, such as cancer and pathogen infection. A dedicated statistical method for differential variability analysis is lacking for cellular omics data, and existing methods for differential composition analysis do not model some compositional data properties, suggesting there is room to improve model performance. Here, we introduce sccomp, a method for differential composition and variability analyses that jointly models data count distribution, compositionality, group-specific variability, and proportion mean-variability association, being aware of outliers. sccomp provides a comprehensive analysis framework that offers realistic data simulation and cross-study knowledge transfer. Here, we demonstrate that mean-variability association is ubiquitous across technologies, highlighting the inadequacy of the very popular Dirichlet-multinomial distribution. We show that sccomp accurately fits experimental data, significantly improving performance over state-of-the-art algorithms. Using sccomp, we identified differential constraints and composition in the microenvironment of primary breast cancer.


Asunto(s)
Genómica , Microbiota , Proteómica/métodos , Simulación por Computador , Algoritmos
5.
ISME J ; 17(10): 1741-1750, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37550382

RESUMEN

Sex pheromones are widely used by insects as a reproductive isolating mechanism to attract conspecifics and repel heterospecifics. Although researchers have obtained extensive knowledge about sex pheromones, little is known about the differentiation mechanism of sex pheromones in closely related species. Using Bactrocera dorsalis and Bactrocera cucurbitae as the study model, we investigated how the male-borne sex pheromones are different. The results demonstrated that both 2,3,5-trimethylpyrazine (TMP) and 2,3,5,6-tetramethylpyrazine (TTMP) were sex pheromones produced by rectal Bacillus in the two flies. However, the TMP/TTMP ratios were reversed, indicating sex pheromone specificity in the two flies. Bacterial fermentation results showed that different threonine and glycine levels were responsible for the preference of rectal Bacillus to produce TMP or TTMP. Accordingly, threonine (glycine) levels and the expression of the threonine and glycine coding genes were significantly different between B. dorsalis and B. cucurbitae. In vivo assays confirmed that increased rectal glycine and threonine levels by amino acid feeding could significantly decrease the TMP/TTMP ratios and result in significantly decreased mating abilities in the studied flies. Meanwhile, decreased rectal glycine and threonine levels due to RNAi of the glycine and threonine coding genes was found to significantly increase the TMP/TTMP ratios and result in significantly decreased mating abilities. The study contributes to the new insight that insects and their symbionts can jointly regulate sex pheromone specificity in insects, and in turn, this helps us to better understand how the evolution of chemical communication affects speciation.


Asunto(s)
Bacillus , Atractivos Sexuales , Tephritidae , Masculino , Animales , Atractivos Sexuales/metabolismo , Aminoácidos/metabolismo , Tephritidae/genética , Tephritidae/metabolismo , Glicina/metabolismo , Treonina/metabolismo , Bacterias
6.
J Nanobiotechnology ; 21(1): 233, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481646

RESUMEN

BACKGROUND: The immunosuppressive microenvironment in glioma induces immunotherapy resistance and is associated with poor prognosis. Glioma-associated mesenchymal stem cells (GA-MSCs) play an important role in the formation of the immunosuppressive microenvironment, but the mechanism is still not clear. RESULTS: We found that GA-MSCs promoted the expression of CD73, an ectonucleotidase that drives immunosuppressive microenvironment maintenance by generating adenosine, on myeloid-derived suppressor cells (MDSCs) through immunosuppressive exosomal miR-21 signaling. This process was similar to the immunosuppressive signaling mediated by glioma exosomal miR-21 but more intense. Further study showed that the miR-21/SP1/DNMT1 positive feedback loop in MSCs triggered by glioma exosomal CD44 upregulated MSC exosomal miR-21 expression, amplifying the glioma exosomal immunosuppressive signal. Modified dendritic cell-derived exosomes (Dex) carrying miR-21 inhibitors could target GA-MSCs and reduce CD73 expression on MDSCs, synergizing with anti-PD-1 monoclonal antibody (mAb). CONCLUSIONS: Overall, this work reveals the critical role of MSCs in the glioma microenvironment as signal multipliers to enhance immunosuppressive signaling of glioma exosomes, and disrupting the positive feedback loop in MSCs with modified Dex could improve PD-1 blockade therapy.


Asunto(s)
Glioma , MicroARNs , Células Supresoras de Origen Mieloide , Humanos , Retroalimentación , Inmunosupresores , MicroARNs/genética , Microambiente Tumoral , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/metabolismo , Exosomas/genética , Exosomas/metabolismo , Factor de Transcripción Sp1
7.
Theranostics ; 13(10): 3310-3329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351164

RESUMEN

Background: Glioma stem cells (GSCs) are a key factor in glioblastoma (GBM) development and treatment resistance. GSCs can be divided into the mesenchymal (MES) and proneural (PN) subtypes, and these two subtypes of GSCs can undergo interconversion under certain conditions. MES GSCs have higher malignancy and radioresistance and are closely associated with an immunosuppressive microenvironment. Long noncoding RNAs (lncRNAs) play a broad role in GBM, while the role of GSCs subtype remains unknown. Methods: We performed RNA sequencing to explore the lncRNA expression profile in MES- and PN-subtype GBM tissues. The biological function of a host gene-MIR222HG-in GBM development was confirmed in vitro and in vivo. Specifically, RNA sequencing, RNA pulldown, mass spectrometry, RIP, ChIP, luciferase reporter assays and Co-IP were performed. Results: MIR222HG, the expression of which can be induced by SPI1, has high levels in MES GBM tissues. Functionally, we demonstrated that MIR222HG promotes the MES transition and radioresistance in GSCs in vivo and in vitro. Mechanistically, MIR222HG can bind to the YWHAE/HDAC5 complex to promote the MES transition of GSCs through H4 deacetylation. Moreover, cotranscribed miR221 and miR222 can be delivered to macrophages via exosomes to target SOCS3, causing immunosuppressive polarization. Finally, PLX-4720 sensitivity is associated with SPI1 expression and acts on MES GSCs to enhance radiosensitivity. Conclusions: This study demonstrates that targeting SPI1 to block transcription of the MIR222HG cluster helps to reduce radioresistance and combat the immunosuppressive microenvironment in GBM. PLX-4720 is a potential GBM drug and radiosensitizer.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/metabolismo , Glioma/metabolismo , Glioblastoma/metabolismo , Macrófagos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral
8.
NPJ Parkinsons Dis ; 9(1): 82, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258507

RESUMEN

Parkinson's disease (PD) is one of the most prevalent movement disorders and its diagnosis relies heavily on the typical clinical manifestations in the late stages. This study aims to screen and identify biomarkers of PD for earlier intervention. We performed a differential analysis of postmortem brain transcriptome studies. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify biomarkers related to Braak stage. We found 58 genes with significantly different expression in both PD brain tissue and blood samples. PD gene signature and risk score model consisting of nine genes were constructed using least absolute shrinkage and selection operator regression (LASSO) and logistic regression. PLOD3 and LRRN3 in gene signature were identified to serve as key genes as well as potential risk factors in PD. Gene function enrichment analysis and evaluation of immune cell infiltration revealed that PLOD3 was implicated in suppression of cellular metabolic function and inflammatory cell infiltration, whereas LRRN3 exhibited an inverse trend. The cellular subpopulation expression of the PLOD3 and LRRN3 has significant distributional variability. The expression of PLOD3 was more enriched in inflammatory cell subpopulations, such as microglia, whereas LRRN3 was more enriched in neurons and oligodendrocyte progenitor cells clusters (OPC). Additionally, the expression of PLOD3 and LRRN3 in Qilu cohort was verified to be consistent with previous results. Collectively, we screened and identified the functions of PLOD3 and LRRN3 based the integrated study. The combined detection of PLOD3 and LRRN3 expression in blood samples can improve the early detection of PD.

9.
Front Oncol ; 13: 1065994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937406

RESUMEN

A newly identified form of cell death known as ferroptosis is characterized by the peroxidation of lipids in response to iron. Rapid progress in research on ferroptosis in glioma and neuroblastoma has promoted the exploitation of ferroptosis in related therapy. This manuscript provides a review of the findings on ferroptosis-related therapy in glioblastoma and neuroblastoma and outlines the mechanisms involved in ferroptosis in glioma and neuroblastoma. We summarize some recent data on traditional drugs, natural compounds and nanomedicines used as ferroptosis inducers in glioma and neuroblastoma, as well as some bioinformatic analyses of genes involved in ferroptosis. Moreover, we summarize some data on the associations of ferroptosis with the tumor immunotherapy and TMZ drug resistance. Finally, we discuss future directions for ferroptosis research in glioma and neuroblastoma and currently unresolved issues.

10.
Cell Death Dis ; 14(2): 147, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810326

RESUMEN

Glioma is the most common malignant tumor of the central nervous system in adults. The tumor microenvironment (TME) is related to poor prognosis in glioma patients. Glioma cells could sort miRNA into exosomes to modify TME. And hypoxia played an important role in this sorting process, but the mechanism is not clear yet. Our study was to find miRNAs sorted into glioma exosomes and reveal the sorting process. Sequencing analysis of glioma patients cerebrospinal fluid (CSF) and tissue showed that miR-204-3p tends to be sorted into exosomes. miR-204-3p suppressed glioma proliferation through the CACNA1C/MAPK pathway. hnRNP A2/B1 can accelerate exosome sorting of miR-204-3p by binding a specific sequence. Hypoxia plays an important role in exosome sorting of miR-204-3p. Hypoxia can upregulate miR-204-3p by upregulating the translation factor SOX9. Hypoxia promotes the transfer of hnRNP A2/B1 to the cytoplasm by upregulating SUMOylation of hnRNP A2/B1 to eliminate miR-204-3p. Exosomal miR-204-3p promoted tube formation of vascular endothelial cells through the ATXN1/STAT3 pathway. The SUMOylation inhibitor TAK-981 can inhibit the exosome-sorting process of miR-204-3p to inhibit tumor growth and angiogenesis. This study revealed that glioma cells can eliminate the suppressor miR-204-3p to accelerate angiogenesis under hypoxia by upregulating SUMOylation. The SUMOylation inhibitor TAK-981 could be a potential drug for glioma. This study revealed that glioma cells can eliminate the suppressor miR-204-3p to accelerate angiogenesis under hypoxia by upregulating SUMOylation. The SUMOylation inhibitor TAK-981 could be a potential drug for glioma.


Asunto(s)
Exosomas , Glioblastoma , Glioma , MicroARNs , Adulto , Humanos , Glioblastoma/patología , Células Endoteliales/metabolismo , Sumoilación , Línea Celular Tumoral , MicroARNs/genética , Glioma/genética , Hipoxia/metabolismo , Exosomas/metabolismo , Proliferación Celular , Microambiente Tumoral
11.
Oncogene ; 42(2): 138-153, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396726

RESUMEN

Circular RNAs (circRNAs) play important roles in the malignant progression of tumours. Herein, we identified an unreported circRNA (hsa-circ-0072688, also named circADAMTS6) that is specifically upregulated in the hypoxic microenvironment of glioblastoma and closely correlated with poor prognosis of gliblastoma patients. We found that circADAMTS6 promotes the malignant progression of glioblastoma by promoting cell proliferation and inhibiting apoptosis. Mechanistically, the hypoxic tumour microenvironment upregulates circADAMTS6 expression through transcription factor activator protein 1 (AP-1) and RNA-binding protein TAR DNA-binding protein 43 (TDP43). Moreover, circADAMTS6 accelerates glioblastoma progression by recruiting and stabilising annexin A2 (ANXA2) in a proteasomes-dependent manner. Furthermore, we found T-5224 (AP-1 inhibitor) treatment induces downregulation of circADAMTS6 and then inhibits tumour growth. In conclusion, our findings highlight the important role of the circADAMTS6/ANXA2 axis based on hypoxic microenvironment in glioblastoma progression, as well as its regulation in NF-κB pathway. Targeting circADAMTS6 is thus expected to become a novel therapeutic strategy for glioblastoma.


Asunto(s)
Anexina A2 , Glioblastoma , MicroARNs , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Glioblastoma/patología , Anexina A2/genética , Anexina A2/metabolismo , Factor de Transcripción AP-1/genética , ARN Circular/genética , Hipoxia/genética , Proliferación Celular/genética , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Microambiente Tumoral/genética
12.
J Exp Clin Cancer Res ; 41(1): 323, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36380368

RESUMEN

BACKGROUND: Intratumoral heterogeneity is the primary challenge in the treatment of glioblastoma (GBM). The presence of glioma stem cells (GSCs) and their conversion between different molecular phenotypes contribute to the complexity of heterogeneity, culminating in preferential resistance to radiotherapy. ARP2/3 (actin-related protein-2/3) complexes (ARPs) are associated with cancer migration, invasion and differentiation, while the implications of ARPs in the phenotype and resistance to radiotherapy of GSCs remain unclear. METHODS: We screened the expression of ARPs in TCGA-GBM and CGGA-GBM databases. Tumor sphere formation assays and limiting dilution assays were applied to assess the implications of ARPC1B in tumorigenesis. Apoptosis, comet, γ-H2AX immunofluorescence (IF), and cell cycle distribution assays were used to evaluate the effect of ARPC1B on radiotherapy resistance. Immunoprecipitation (IP) and mass spectrometry analysis were used to detect ARPC1B-interacting proteins. Immune blot assays were performed to evaluate protein ubiquitination, and deletion mutant constructs were designed to determine the binding sites of protein interactions. The Spearman correlation algorithm was performed to screen for drugs that indicated cell sensitivity by the expression of ARPC1B. An intracranial xenograft GSC mouse model was used to investigate the role of ARPC1B in vivo. RESULTS: We concluded that ARPC1B was significantly upregulated in MES-GBM/GSCs and was correlated with a poor prognosis. Both in vitro and in vivo assays indicated that knockdown of ARPC1B in MES-GSCs reduced tumorigenicity and resistance to IR treatment, whereas overexpression of ARPC1B in PN-GSCs exhibited the opposite effects. Mechanistically, ARPC1B interacted with IFI16 and HuR to maintain protein stability. In detail, the Pyrin of IFI16 and RRM2 of HuR were implicated in binding to ARPC1B, which counteracted TRIM21-mediated degradation of ubiquitination to IFI16 and HuR. Additionally, the function of ARPC1B was dependent on IFI16-induced activation of NF-κB pathway and HuR-induced activation of STAT3 pathway. Finally, we screened AZD6738, an ataxia telangiectasia mutated and rad3-related (ATR) inhibitor, based on the expression of ARPC1B. In addition to ARPC1B expression reflecting cellular sensitivity to AZD6738, the combination of AZD6738 and radiotherapy exhibited potent antitumor effects both in vitro and in vivo. CONCLUSION: ARPC1B promoted MES phenotype maintenance and radiotherapy resistance by inhibiting TRIM21-mediated degradation of IFI16 and HuR, thereby activating the NF-κB and STAT3 signaling pathways, respectively. AZD6738, identified based on ARPC1B expression, exhibited excellent anti-GSC activity in combination with radiotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Humanos , Ratones , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Glioma/genética , Glioma/radioterapia , Glioma/tratamiento farmacológico , Células Madre Neoplásicas/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Fosfoproteínas/genética
13.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36230886

RESUMEN

Targeted therapies for cancers have improved primary tumor response rates, but concomitantly, brain metastases (BM) have become the most common brain tumors in adults and are associated with a dismal prognosis of generally less than 6 months, irrespective of the primary cancer type. They most commonly occur in patients with primary breast, lung, or melanoma histologies; however, they also appear in patients with other primary cancers including, but not limited to, prostate cancer, colorectal cancer, and renal cell carcinoma. Historically, molecular biomarkers have normally been identified from primary tumor resections. However, clinically informative genomic alterations can occur during BM development and these potentially actionable alterations are not always detected in the primary tumor leading to missed opportunities for effective targeted therapy. The molecular mechanisms that facilitate and drive metastasis to the brain are poorly understood. Identifying the differences between the brain and other extracranial sties of metastasis, and between primary tumors and BM, is essential to improving our understanding of BM development and ultimately patient management and survival. In this review, we present the current data on the genomic landscape of BM from various primary cancers which metastasize to the brain and outline potential mechanisms which may play a role in promoting the formation of the distant metastases in the brain.

14.
Oncogene ; 41(41): 4618-4632, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36085418

RESUMEN

Exosomes can selectively secrete harmful metabolic substances from cells to maintain cellular homeostasis, and complex crosstalk occurs between exosomes and tumor-associated macrophages (TAMs) in the glioma immune microenvironment. However, the precise mechanisms by which these exosome-encapsulated cargos create an immunosuppressive microenvironment remain unclear. Herein, we investigated the effect of glioma-derived exosomes (GDEs) on macrophage polarization and glioma progression. We performed sequencing analysis of cerebrospinal fluid (CSF) and tumor tissues from glioma patients to identify functional microRNAs (miRNAs). High levels of miR-3591-3p were found in CSF and GDEs but not in normal brain tissue or glial cells. Functionally, GDEs and miR-3591-3p significantly induced M2 macrophage polarization and increased the secretion of IL10 and TGFß1, which in turn promoted glioma invasion and migration. Moreover, miR-3591-3p overexpression in glioma cell lines resulted in G2/M arrest and markedly increased apoptosis. Mechanistically, miR-3591-3p can directly target CBLB and MAPK1 in macrophages and glioma cells, respectively, and further activate the JAK2/PI3K/AKT/mTOR, JAK2/STAT3, and MAPK signaling pathways. In vivo experiments confirmed that macrophages lentivirally transduced with miR-3591-3p can significantly promote glioma progression. Thus, our study demonstrates that tumor-suppressive miR-3591-3p in glioma cells can be secreted via exosomes and target TAMs to induce the formation of an immunosuppressive microenvironment. Collectively, these findings provide new insights into the role of glioma exosomal miRNAs in mediating the establishment of an immunosuppressive tumor microenvironment and show that miR-3591-3p may be a valuable biomarker and that blocking the encapsulation of miR-3591-3p into exosomes may become a novel immunotherapeutic strategy for glioma.


Asunto(s)
Exosomas , Glioma , MicroARNs , Apoptosis/genética , Línea Celular Tumoral , Exosomas/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Glioma/patología , Humanos , Interleucina-10/metabolismo , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Microambiente Tumoral/genética
15.
Front Immunol ; 13: 986615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159816

RESUMEN

Glioblastoma (GBM) patients exhibit high mortality and recurrence rates despite multimodal therapy. Small nucleolar RNA host genes (SNHGs) are a group of long noncoding RNAs that perform a wide range of biological functions. We aimed to reveal the role of SNHGs in GBM subtypes, cell infiltration into the tumor microenvironment (TME), and stemness characteristics. SNHG interaction patterns were determined based on 25 SNHGs and systematically correlated with GBM subtypes, TME and stemness characteristics. The SNHG interaction score (SNHGscore) model was generated to quantify SNHG interaction patterns. The high SNHGscore group was characterized by a poor prognosis, the mesenchymal (MES) subtype, the infiltration of suppressive immune cells and a differentiated phenotype. Further analysis indicated that high SNHGscore was associated with a weaker response to anti-PD-1/L1 immunotherapy. Tumor cells with high SNHG scores were more sensitive to drugs targeting the EGFR and ERK-MAPK signaling pathways. Finally, we assessed SNHG interaction patterns in multiple cancers to verify their universality. This is a novel and comprehensive study that provides targeted therapeutic strategies based on SNHG interactions. Our work highlights the crosstalk and potential clinical utility of SNHG interactions in cancer therapy.


Asunto(s)
Glioblastoma , ARN Largo no Codificante , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , ARN Largo no Codificante/genética , ARN Nucleolar Pequeño , Microambiente Tumoral/genética
16.
J Exp Clin Cancer Res ; 41(1): 223, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35836243

RESUMEN

BACKGROUND: Resistance to temozolomide (TMZ) is a major obstacle to preventing glioblastoma (GBM) recurrence after surgery. Although long noncoding RNAs (lncRNAs) play a variety of roles in GBM, the lncRNAs that regulate TMZ resistance have not yet been clearly elucidated. This study aims to identify lncRNAs that may affect TMZ treatment sensitivity and to explore novel therapeutic strategies to overcome TMZ resistance in GBM. METHODS: LncRNAs associated with TMZ resistance were identified using the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Quantitative real-time PCR (qRT-PCR) was used to determine the expression of PDIA3P1 in TMZ-resistant and TMZ-sensitive GBM cell lines. Both gain-of-function and loss-of-function studies were used to assess the effects of PDIA3P1 on TMZ resistance using in vitro and in vivo assays. Glioma stem cells (GSCs) were used to determine the effect of PDIA3P1 on the GBM subtype. The hypothesis that PDIA3P1 promotes proneural-to-mesenchymal transition (PMT) was established using bioinformatics analysis and functional experiments. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to examine the interaction between PDIA3P1 and C/EBPß. The posttranslational modification mechanism of C/EBPß was verified using ubiquitination and coimmunoprecipitation (co-IP) experiments. CompuSyn was leveraged to calculate the combination index (CI), and the antitumor effect of TMZ combined with nefllamapimod (NEF) was validated both in vitro and in vivo. RESULTS: We identified a lncRNA, PDIA3P1, which was upregulated in TMZ-resistant GBM cell lines. Overexpression of PDIA3P1 promoted the acquisition of TMZ resistance, whereas knockdown of PDIA3P1 restored TMZ sensitivity. PDIA3P1 was upregulated in MES-GBM, promoted PMT progression in GSCs, and caused GBMs to be more resistant to TMZ treatment. Mechanistically, PDIA3P1 disrupted the C/EBPß-MDM2 complex and stabilized the C/EBPß protein by preventing MDM2-mediated ubiquitination. Expression of PDIA3P1 was upregulated in a time- and concentration-dependent manner in response to TMZ treatment, and TMZ-induced upregulation of PDIA3P1 was mediated by the p38α-MAPK signaling pathway. NEF is a small molecule drug that specifically targets p38α with excellent blood-brain barrier (BBB) permeability. NEF blocked TMZ-responsive PDIA3P1 upregulation and produced synergistic effects when combined with TMZ at specific concentrations. The combination of TMZ and NEF exhibited excellent synergistic antitumor effects both in vitro and in vivo. CONCLUSION: PDIA3P1 promotes PMT by stabilizing C/EBPß, reducing the sensitivity of GBM cells to TMZ treatment. NEF inhibits TMZ-responsive PDIA3P1 upregulation, and NEF combined with TMZ provides better antitumor effects.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , ARN Largo no Codificante , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cell Death Dis ; 13(5): 426, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501306

RESUMEN

Clear evidence shows that tumors could secrete microRNAs (miRNAs) via exosomes to modulate the tumor microenvironment (TME). However, the mechanisms sorting specific miRNAs into exosomes are still unclear. In order to study the biological function and characterization of exosomal miRNAs, we performed whole-transcriptome sequencing in 59 patients' whole-course cerebrospinal fluid (CSF) small extracellular vesicles (sEV) and matched glioma tissue samples. The results demonstrate that miRNAs could be divided into exosome-enriched miRNAs (ExomiRNAs) and intracellular-retained miRNAs (CLmiRNAs), and exosome-enriched miRNAs generally play a dual role. Among them, miR-1298-5p was enriched in CSF exosomes and suppressed glioma progression in vitro and vivo experiments. Interestingly, exosomal miR-1298-5p could promote the immunosuppressive effects of myeloid-derived suppressor cells (MDSCs) to facilitate glioma. Therefore, we found miR-1298-5p had different effects on glioma cells and MDSCs. Mechanically, downstream signaling pathway analyses showed that miR-1298-5p plays distinct roles in glioma cells and MDSCs via targeting SETD7 and MSH2, respectively. Moreover, reverse verification was performed on the intracellular-retained miRNA miR-9-5p. Thus, we confirmed that tumor-suppressive miRNAs in glioma cells could be eliminated through exosomes and target tumor-associated immune cells to induce tumor-promoting phenotypes. Glioma could get double benefit from it. These findings uncover the mechanisms that glioma selectively sorts miRNAs into exosomes and modulates tumor immunity.


Asunto(s)
Exosomas , Glioma , MicroARNs , Células Supresoras de Origen Mieloide , Movimiento Celular , Exosomas/metabolismo , Glioma/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Microambiente Tumoral/genética
18.
Front Immunol ; 13: 795240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432338

RESUMEN

Background: Previous studies have reported the effect of N7-methylguanosine (m7G) regulator methyltransferase like-1 protein (METTL1) in tumor initiation, metastasis, and chemosensitivity. However, the relationship between METTL1 and cancer immune infiltration is not validated and the prognostic significance of METTL1 in pan-cancer remains unclear. Methods: Clinical parameters, including gender, age, lifetime, stage, and treatment response were analyzed to evaluate the prognostic significance of METTL1. To evaluate protein level of METTL1, the METTL1 activity was generated by single sample gene set enrichment analysis. The one-class logistic regression algorithm was used to calculate the stemness indices based on transcriptomics and methylation data of pan-cancer and pluripotent stem cells. The relationship between METTL1 expression or activity and tumor immune infiltration were analyzed to explore the significance of METTL1 in tumor immunotherapy. Meanwhile, the correlation between three immunotherapeutic biomarkers and METTL1 was investigated. Finally, to calculate the association between drug sensitivity and METTL1 expression, spearman correlation analysis was performed. Results: METTL1 was not intimately related to gender, age, tumor stage, or treatment outcome of the various cancers, but it displayed potential prognostic significance for evaluating patient survival. High METTL1 expression was related to tumor progression-relevant pathways. Moreover, METTL1 exhibited a distinct correlation with tumor immune microenvironment infiltration and stemness indices. In the anti-PD-L1 cohort, patients in treatment response group exhibited significantly higher METTL1 expression than those in the no/limited response group. Further analysis showed that tumor cell lines with higher METTL1 expression were more sensitive to drugs targeting chromatin histone methylation, ERK-MAPK and WNT signaling pathways. Conclusion: This study provides insight into the correlation of METTL1 with tumor immune infiltration and stemness in pan-cancer, revealing the significance of METTL1 for cancer progression and guiding more effective and generalized therapy strategies.


Asunto(s)
Metiltransferasas , Neoplasias , Humanos , Inmunoterapia , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Neoplasias/inducido químicamente , Neoplasias/genética , Neoplasias/terapia , Pronóstico , Microambiente Tumoral
19.
Cancer Sci ; 113(8): 2668-2680, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35411604

RESUMEN

Liquid biopsy is a novel strategy for tumour diagnosis. The contents of cerebrospinal fluid (CSF) exosomes could reflect glioma status, hence sampling exosomes from CSF is a means of liquid biopsy for glioma. However, few studies have focused on the function of microRNAs in CSF exosomes. In this study, we found that miR-3184-3p was enriched in CSF exosomes in glioma patients and was downregulated after tumour resection. We found that miR-3184 facilitates glioma progression in two ways. On the one hand, miR-3184 directly promotes proliferation, migration, and invasion while inhibiting apoptosis in glioma. On the other hand, miR-3184 in glioma-derived exosomes polarizes macrophages to an M2-like phenotype, which further aggravates tumour progression. Overall, the current findings uncovered a new mechanism and highlighted the significant role of miR-3184 in glioma progression. Furthermore, exosomal miR-3184 could be a considerable factor with potential applications in glioma diagnosis and treatment in the future.


Asunto(s)
Exosomas , Glioma , Macrófagos , MicroARNs , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Exosomas/genética , Exosomas/patología , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos , Macrófagos/patología , MicroARNs/líquido cefalorraquídeo , MicroARNs/genética
20.
Front Immunol ; 13: 820673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309323

RESUMEN

Background: Glioblastoma (GBM) is a fatal brain tumor with no effective treatment. The specific GBM tumor immune microenvironment (TIME) may contribute to resistance to immunotherapy, a tumor therapy with great potential. Thus, an in-depth understanding of the characteristics of tumor-infiltrating immune cells is essential for exploring biomarkers in GBM pathogenesis and immunotherapy. Methods: We estimated the relative abundances of 25 immune cell types in 796 GBM samples using single sample gene set enrichment analysis (ssGSEA). Unsupervised clustering was used to identify different GBM-associated TIME immune cell infiltration (GTMEI) patterns. The GTMEIscore system was constructed with principal component analysis (PCA) to determine the immune infiltration pattern of individual tumors. Results: We revealed three distinct GTMEI patterns with different clinical outcomes and modulated biological pathways. We developed a scoring system (GTMEIscore) to determine the immune infiltration pattern of individual tumors. We comprehensively analyzed the genomic characteristics, molecular subtypes and clinicopathological features as well as proteomic, phosphoproteomic, acetylomic, lipidomic and metabolomic properties associated with the GTMEIscore and revealed many novel dysregulated pathways and precise targets in GBM. Moreover, the GTMEIscore accurately quantified the immune status of many other cancer types. Clinically, the GTMEIscore was found to have significant potential therapeutic value for chemotherapy/radiotherapy, immune checkpoint inhibitor (ICI) therapy and targeted therapy. Conclusions: For the first time, we employed a multilevel and multiplatform strategy to construct a multidimensional molecular map of tumors with different immune infiltration patterns. These results may provide theoretical basises for identifying more effective predictive biomarkers and developing more effective drug combination strategies or novel immunotherapeutic agents for GBM.


Asunto(s)
Glioblastoma , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Inmunoterapia/métodos , Pronóstico , Proteómica , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA