RESUMEN
The development of computational tools for the systematic prediction of metabolic vulnerabilities of cancer cells constitutes a central question in systems biology. Here, we present gmctool, a freely accessible online tool that allows us to accomplish this task in a simple, efficient and intuitive environment. gmctool exploits the concept of genetic Minimal Cut Sets (gMCSs), a theoretical approach to synthetic lethality based on genome-scale metabolic networks, including a unique database of synthetic lethals computed from Human1, the most recent metabolic reconstruction of human cells. gmctool introduces qualitative and quantitative improvements over our previously developed algorithms to predict, visualize and analyze metabolic vulnerabilities in cancer, demonstrating a superior performance than competing algorithms. A detailed illustration of gmctool is presented for multiple myeloma (MM), an incurable hematological malignancy. We provide in vitro experimental evidence for the essentiality of CTPS1 (CTPS synthase) and UAP1 (UDP-N-Acetylglucosamine Pyrophosphorylase 1) in specific MM patient subgroups.
Asunto(s)
Algoritmos , Redes y Vías Metabólicas , Mieloma Múltiple , Humanos , Redes y Vías Metabólicas/genética , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Biología Computacional/métodos , Neoplasias/genética , Neoplasias/metabolismo , Programas Informáticos , Biología de Sistemas/métodos , Mutaciones Letales Sintéticas/genéticaRESUMEN
Despite the development of novel therapies for acute myeloid leukemia, outcomes remain poor for most patients, and therapeutic improvements are an urgent unmet need. Although treatment regimens promoting differentiation have succeeded in the treatment of acute promyelocytic leukemia, their role in other acute myeloid leukemia subtypes needs to be explored. Here we identify and characterize two lysine deacetylase inhibitors, CM-444 and CM-1758, exhibiting the capacity to promote myeloid differentiation in all acute myeloid leukemia subtypes at low non-cytotoxic doses, unlike other commercial histone deacetylase inhibitors. Analyzing the acetylome after CM-444 and CM-1758 treatment reveals modulation of non-histone proteins involved in the enhancer-promoter chromatin regulatory complex, including bromodomain proteins. This acetylation is essential for enhancing the expression of key transcription factors directly involved in the differentiation therapy induced by CM-444/CM-1758 in acute myeloid leukemia. In summary, these compounds may represent effective differentiation-based therapeutic agents across acute myeloid leukemia subtypes with a potential mechanism for the treatment of acute myeloid leukemia.
Asunto(s)
Diferenciación Celular , Epigénesis Genética , Inhibidores de Histona Desacetilasas , Leucemia Mieloide Aguda , Humanos , Diferenciación Celular/efectos de los fármacos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Línea Celular Tumoral , Acetilación/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , AnimalesRESUMEN
Naive human pluripotent stem cells (hPSCs) are defined as the in vitro counterpart of the human preimplantation embryo's epiblast and are used as a model system to study developmental processes. In this study, we report the discovery and characterization of distinct cell populations coexisting with epiblast-like cells in 5iLAF naive human induced PSC (hiPSC) cultures. It is noteworthy that these populations closely resemble different cell types of the human embryo at early developmental stages. While epiblast-like cells represent the main cell population, interestingly we detect a cell population with gene and transposable element expression profile closely resembling the totipotent eight-cell (8C)-stage human embryo, and three cell populations analogous to trophectoderm cells at different stages of their maturation process: transition, early, and mature stages. Moreover, we reveal the presence of cells resembling primitive endoderm. Thus, 5iLAF naive hiPSC cultures provide an excellent opportunity to model the earliest events of human embryogenesis, from the 8C stage to the peri-implantation period.
Asunto(s)
Embrión de Mamíferos , Células Madre Pluripotentes , Humanos , Desarrollo Embrionario/genética , Endodermo , Estratos Germinativos , Diferenciación Celular/genética , BlastocistoRESUMEN
Pico- and nanoplankton are key players in the marine ecosystems due to their implication in the biogeochemical cycles, nutrient recycling and the pelagic food webs. However, the specific dynamics and niches of most bacterial, archaeal and eukaryotic plankton remain unknown, as well as the interactions between them. Better characterization of these is critical for understanding and predicting ecosystem functioning under anthropogenic pressures. We used environmental DNA metabarcoding across a 6-year time series to explore the structure and seasonality of pico- and nanoplankton communities in two sites of the Bay of Biscay, one coastal and one offshore, and construct association networks to reveal potential keystone and connector taxa. Temporal trends in alpha diversity were similar between the two sites, and concurrent communities more similar than within the same site at different times. However, we found differences between the network topologies of the two sites, with both shared and site-specific keystones and connectors. For example, Micromonas, with lower abundance in the offshore site is a keystone here, indicating a stronger effect of associations such as resource competition. This study provides an example of how time series and association network analysis can reveal how similar communities may function differently despite being geographically close.
Asunto(s)
Bahías , Ecosistema , Plancton/genética , Archaea/genética , Eucariontes/genéticaRESUMEN
Recent functional genomic screenssuch as CRISPR-Cas9 or RNAi screeninghave fostered a new wave of targeted treatments based on the concept of synthetic lethality. These approaches identified LEthal Dependencies (LEDs) by estimating the effect of genetic events on cell viability. The multiple-hypothesis problem is related to a large number of gene knockouts limiting the statistical power of these studies. Here, we show that predictions of LEDs from functional screens can be dramatically improved by incorporating the "HUb effect in Genetic Essentiality" (HUGE) of gene alterations. We analyze three recent genome-wide loss-of-function screensProject Score, CERES score and DEMETER scoreidentifying LEDs with 75 times larger statistical power than using state-of-the-art methods. Using acute myeloid leukemia, breast cancer, lung adenocarcinoma and colon adenocarcinoma as disease models, we validate that our predictions are enriched in a recent harmonized knowledge base of clinical interpretations of somatic genomic variants in cancer (AUROC > 0.87). Our approach is effective even in tumors with large genetic heterogeneity such as acute myeloid leukemia, where we identified LEDs not recalled by previous pipelines, including FLT3-mutant genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro validations confirm lethal dependencies of either NRAS or PTPN11 depending on the NRAS mutational status. HUGE will hopefully help discover novel genetic dependencies amenable for precision-targeted therapies in cancer. All the graphs showing lethal dependencies for the 19 tumor types analyzed can be visualized in an interactive tool.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple , ARN Largo no Codificante , ARN Neoplásico , Femenino , Humanos , Masculino , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genéticaRESUMEN
Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC50 < 200 nM). Additionally, lysine methyltransferase G9a inhibitory activity is achieved (from a low nanomolar range) by introduction of a key lysine mimic group at the 7-position of the quinoline ring. The corresponding epigenetic functional cellular responses are observed: histone-3 acetylation, DNA hypomethylation, and decreased histone-3 methylation at lysine-9. These chemical probes, multitarget epigenetic inhibitors, were validated against the multiple myeloma cell line MM1.S, demonstrating promising in vitro activity of 12a (CM-444) with GI50 of 32 nM, an adequate therapeutic window (>1 log unit), and a suitable pharmacokinetic profile. In vivo, 12a achieved significant antitumor efficacy in a xenograft mouse model of human multiple myeloma.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Antígenos de Histocompatibilidad/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismoRESUMEN
Multiple myeloma (MM) is an incurable disease, whose clinical heterogeneity makes its management challenging, highlighting the need for biological features to guide improved therapies. Deregulation of specific long non-coding RNAs (lncRNAs) has been shown in MM, nevertheless, the complete lncRNA transcriptome has not yet been elucidated. In this work, we identified 40,511 novel lncRNAs in MM samples. lncRNAs accounted for 82% of the MM transcriptome and were more heterogeneously expressed than coding genes. A total of 10,351 overexpressed and 9,535 downregulated lncRNAs were identified in MM patients when compared with normal bone-marrow plasma cells. Transcriptional dynamics study of lncRNAs in the context of normal B-cell maturation revealed 989 lncRNAs with exclusive expression in MM, among which 89 showed de novo epigenomic activation. Knockdown studies on one of these lncRNAs, SMILO (specific myeloma intergenic long non-coding RNA), resulted in reduced proliferation and induction of apoptosis of MM cells, and activation of the interferon pathway. We also showed that the expression of lncRNAs, together with clinical and genetic risk alterations, stratified MM patients into several progression-free survival and overall survival groups. In summary, our global analysis of the lncRNAs transcriptome reveals the presence of specific lncRNAs associated with the biological and clinical behavior of the disease.
Asunto(s)
Mieloma Múltiple/genética , ARN Largo no Codificante/genética , Transcriptoma/genética , Apoptosis/genética , Proliferación Celular/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Supervivencia sin ProgresiónRESUMEN
Multiple myeloma (MM) is a plasma cell neoplasm associated with a broad variety of genetic lesions. In spite of this genetic heterogeneity, MMs share a characteristic malignant phenotype whose underlying molecular basis remains poorly characterized. In the present study, we examined plasma cells from MM using a multi-epigenomics approach and demonstrated that, when compared to normal B cells, malignant plasma cells showed an extensive activation of regulatory elements, in part affecting coregulated adjacent genes. Among target genes up-regulated by this process, we found members of the NOTCH, NF-kB, MTOR signaling, and TP53 signaling pathways. Other activated genes included sets involved in osteoblast differentiation and response to oxidative stress, all of which have been shown to be associated with the MM phenotype and clinical behavior. We functionally characterized MM-specific active distant enhancers controlling the expression of thioredoxin (TXN), a major regulator of cellular redox status and, in addition, identified PRDM5 as a novel essential gene for MM. Collectively, our data indicate that aberrant chromatin activation is a unifying feature underlying the malignant plasma cell phenotype.
Asunto(s)
Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Células Plasmáticas/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Humanos , FN-kappa B/metabolismo , Osteogénesis/genética , Receptores Notch/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Tiorredoxinas/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia ArribaRESUMEN
Bladder cancer is lethal in its advanced, muscle-invasive phase with very limited therapeutic advances1,2. Recent molecular characterization has defined new (epi)genetic drivers and potential targets for bladder cancer3,4. The immune checkpoint inhibitors have shown remarkable efficacy but only in a limited fraction of bladder cancer patients5-8. Here, we show that high G9a (EHMT2) expression is associated with poor clinical outcome in bladder cancer and that targeting G9a/DNMT methyltransferase activity with a novel inhibitor (CM-272) induces apoptosis and immunogenic cell death. Using an immunocompetent quadruple-knockout (PtenloxP/loxP; Trp53loxP/loxP; Rb1loxP/loxP; Rbl1-/-) transgenic mouse model of aggressive metastatic, muscle-invasive bladder cancer, we demonstrate that CM-272 + cisplatin treatment results in statistically significant regression of established tumors and metastases. The antitumor effect is significantly improved when CM-272 is combined with anti-programmed cell death ligand 1, even in the absence of cisplatin. These effects are associated with an endogenous antitumor immune response and immunogenic cell death with the conversion of a cold immune tumor into a hot tumor. Finally, increased G9a expression was associated with resistance to programmed cell death protein 1 inhibition in a cohort of patients with bladder cancer. In summary, these findings support new and promising opportunities for the treatment of bladder cancer using a combination of epigenetic inhibitors and immune checkpoint blockade.
Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Línea Celular Tumoral , Cisplatino/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Femenino , Antígenos de Histocompatibilidad , Humanos , Ratones , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patologíaRESUMEN
lncRNAs make up a majority of the human transcriptome and have key regulatory functions. Here we perform unbiased de novo annotation of transcripts expressed during the human humoral immune response to find 30% of the human genome transcribed during this process, yet 58% of these transcripts manifest striking differential expression, indicating an lncRNA phylogenetic relationship among cell types that is more robust than that of coding genes. We provide an atlas of lncRNAs in naive and GC B-cells that indicates their partition into ten functionally categories based on chromatin features, DNase hypersensitivity and transcription factor localization, defining lncRNAs classes such as enhancer-RNAs (eRNA), bivalent-lncRNAs, and CTCF-associated, among others. Specifically, eRNAs are transcribed in 8.6% of regular enhancers and 36.5% of super enhancers, and are associated with coding genes that participate in critical immune regulatory pathways, while plasma cells have uniquely high levels of circular-RNAs accounted for by and reflecting the combinatorial clonal state of the Immunoglobulin loci.
Asunto(s)
Linfocitos B/fisiología , Inmunidad Humoral/genética , ARN Largo no Codificante/inmunología , Linfocitos B/inmunología , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Redes Reguladoras de Genes/inmunología , Genoma Humano , Humanos , ARN , ARN CircularRESUMEN
We studied the core bacterial communities of 19 sponge species from Nha Trang Bay (Central Vietnam), with particular emphasis on the contribution of planktonic seawater bacteria to the sponge core microbiomes. To ensure consistent sponge-microbe associations and accurate identification of planktonic bacteria transmitted from seawater, we were very restrictive with the definition of the sponge core microbiomes (present in all the replicates), and with the identification of valid biological 16S rRNA gene sequences (100% sequence identity) that belonged to potentially different bacterial taxa. We found a high overlap (>50% relative abundance) between the sponge species core microbiome and the seawater bacterial core in ca. a half of the studied species, including representatives of both, HMA and LMA sponges. From our restrictive analysis, we point to horizontal transmission as a relevant way of symbiont acquisition in sponges. Some species-specific recognition mechanisms may act in sponges to enrich specific seawater bacteria in their tissues. These mechanisms would allow the maintenance of bacterial communities in a species across geographical ranges. Moreover, besides contrasting preferences in bacteria selection from seawater, divergent physiological traits may also account for the different microbiomes in species of HMA and LMA sponges.
Asunto(s)
Microbiota , Poríferos/microbiología , Agua de Mar/microbiología , Animales , Biodiversidad , Especificidad de la EspecieRESUMEN
Epigenetic regulators that exhibit aberrant enzymatic activities or expression profiles are potential therapeutic targets for cancers. Specifically, enzymes responsible for methylation at histone-3 lysine-9 (like G9a) and aberrant DNA hypermethylation (DNMTs) have been implicated in a number of cancers. Recently, molecules bearing a 4-aminoquinoline scaffold were reported as dual inhibitors of these targets and showed a significant in vivo efficacy in animal models of hematological malignancies. Here, we report a detailed exploration around three growing vectors born by this chemotype. Exploring this chemical space led to the identification of features to navigate G9a and DNMT1 biological spaces: not only their corresponding exclusive areas, selective compounds, but also common spaces. Thus, we identified from selective G9a and first-in-class DNMT1 inhibitors, >1 log unit between their IC50 values, with IC50 < 25 nM (e.g., 43 and 26, respectively) to equipotent inhibitors with IC50 < 50 nM for both targets (e.g., 13). Their ADME/Tox profiling and antiproliferative efficacies, versus some cancer cell lines, are also reported.
Asunto(s)
Aminoquinolinas/química , Aminoquinolinas/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Diseño de Fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Aminoquinolinas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Metilasas de Modificación del ADN/química , Metilasas de Modificación del ADN/metabolismo , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Conformación ProteicaRESUMEN
Using knowledge- and structure-based approaches, we designed and synthesized reversible chemical probes that simultaneously inhibit the activity of two epigenetic targets, histone 3 lysine 9 methyltransferase (G9a) and DNA methyltransferases (DNMT), at nanomolar ranges. Enzymatic competition assays confirmed our design strategy: substrate competitive inhibitors. Next, an initial exploration around our hit 11 was pursued to identify an adequate tool compound for in vivo testing. In vitro treatment of different hematological neoplasia cell lines led to the identification of molecules with clear antiproliferative efficacies (GI50 values in the nanomolar range). On the basis of epigenetic functional cellular responses (levels of lysine 9 methylation and 5-methylcytosine), an acceptable therapeutic window (around 1 log unit) and a suitable pharmacokinetic profile, 12 was selected for in vivo proof-of-concept ( Nat. Commun. 2017 , 8 , 15424 ). Herein, 12 achieved a significant in vivo efficacy: 70% overall tumor growth inhibition of a human acute myeloid leukemia (AML) xenograft in a mouse model.
Asunto(s)
Antineoplásicos/farmacología , Metilasas de Modificación del ADN/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Metilasas de Modificación del ADN/química , Metilasas de Modificación del ADN/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Antígenos de Histocompatibilidad/química , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones , Simulación del Acoplamiento Molecular , Conformación Proteica , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of iPSCs and could be used for disease modelling, high throughput screenings and/or regenerative medicine applications. In this study, we showed that a new first-in-class reversible dual G9a/DNMT1 inhibitor compound (CM272) improves the efficiency of human cell reprogramming and iPSC generation from primary cells of healthy donors and patient samples, using both integrative and non-integrative methods. Moreover, CM272 facilitates the generation of human iPSC with only two factors allowing the removal of the most potent oncogenic factor cMYC. Furthermore, we demonstrated that mechanistically, treatment with CM272 induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to OSKM refractory binding regions that are required for iPSC establishment, and enhances mesenchymal to epithelial transition during the early phase of cell reprogramming. Thus, the use of this new G9a/DNMT reversible dual inhibitor compound may represent an interesting alternative for improving cell reprogramming and human iPSC derivation for many different applications while providing interesting insights into reprogramming mechanisms.
Asunto(s)
Reprogramación Celular , Genoma Humano , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Células Madre Pluripotentes Inducidas/citología , Proteínas Represoras/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Células Cultivadas , Antígenos de Histocompatibilidad , Humanos , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Constraint-based modeling for genome-scale metabolic networks has emerged in the last years as a promising approach to elucidate drug targets in cancer. Beyond the canonical biosynthetic routes to produce biomass, it is of key importance to focus on metabolic routes that sustain the proliferative capacity through the regulation of other biological means in order to improve in-silico gene essentiality analyses. Polyamines are polycations with central roles in cancer cell proliferation, through the regulation of transcription and translation among other things, but are typically neglected in in silico cancer metabolic models. In this study, we analysed essential genes for the biosynthesis of polyamines. Our analysis corroborates the importance of previously known regulators of the pathway, such as Adenosylmethionine Decarboxylase 1 (AMD1) and uncovers novel enzymes predicted to be relevant for polyamine homeostasis. We focused on Adenine Phosphoribosyltransferase (APRT) and demonstrated the detrimental consequence of APRT gene silencing on different leukaemia cell lines. Our results highlight the importance of revisiting the metabolic models used for in-silico gene essentiality analyses in order to maximize the potential for drug target identification in cancer.
Asunto(s)
Adenina Fosforribosiltransferasa/metabolismo , Adenina Fosforribosiltransferasa/fisiología , Poliaminas/metabolismo , Adenosilmetionina Descarboxilasa/metabolismo , Fenómenos Bioquímicos , Línea Celular Tumoral , Proliferación Celular , Simulación por Computador , Genes Esenciales/genética , Homeostasis , Humanos , Leucemia/genética , Redes y Vías Metabólicas , Neoplasias/genética , PolielectrolitosRESUMEN
Synthetic lethality is a promising concept in cancer research, potentially opening new possibilities for the development of more effective and selective treatments. Here, we present a computational method to predict and exploit synthetic lethality in cancer metabolism. Our approach relies on the concept of genetic minimal cut sets and gene expression data, demonstrating a superior performance to previous approaches predicting metabolic vulnerabilities in cancer. Our genetic minimal cut set computational framework is applied to evaluate the lethality of ribonucleotide reductase catalytic subunit M1 (RRM1) inhibition in multiple myeloma. We present a computational and experimental study of the effect of RRM1 inhibition in four multiple myeloma cell lines. In addition, using publicly available genome-scale loss-of-function screens, a possible mechanism by which the inhibition of RRM1 is effective in cancer is established. Overall, our approach shows promising results and lays the foundation to build a novel family of algorithms to target metabolism in cancer.Exploiting synthetic lethality is a promising approach for cancer therapy. Here, the authors present an approach to identifying such interactions by finding genetic minimal cut sets (gMCSs) that block cancer proliferation, and apply it to study the lethality of RRM1 inhibition in multiple myeloma.
Asunto(s)
Simulación por Computador , Neoplasias/genética , Neoplasias/metabolismo , Mutaciones Letales Sintéticas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Genes Relacionados con las Neoplasias , HumanosRESUMEN
Sponges are key organisms in the marine benthos where they play essential roles in ecological processes such as creating new niches, competition for resources, and organic matter recycling. Despite the increasing number of taxonomical studies, many sponge species remain hidden, whether unnoticed or cryptic. The occurrence of cryptic species may confound ecological studies by underestimating biodiversity. In this study, we monitored photographically growth, fusions, fissions, and survival of two morphologically cryptic species Hemimycale mediterranea Uriz, Garate & Agell, 2017 and H. columella (Bowerbank, 1874). Additionally, we characterized the main environmental factors of the corresponding species habitats, trying to ascertain whether some abiotic factors were correlated with the distribution of these species. Sponge monitoring was performed monthly. Seawater samples were collected the same monitoring days in the vicinity of the target sponges. Results showed contrasting growth and survival patterns for each species: H. mediterranea totally disappeared after larval release while 64% of individuals of H. columella survived the entire two years we monitored. The species also differed in the number of fissions and fusions. These events were evenly distributed throughout the year in the H. mediterranea population but concentrated in cold months in H. columella. No measured environmental factor correlated with H. mediterranea growth rates, while temperature and dissolved organic nitrogen were negatively correlated with H. columella growth rates. The strong differences in depth distribution, survival, growth, fusions, and fissions found between these two cryptic species, highlights the importance of untangling cryptic species before ecological studies are performed in particular when these species share geographical distribution.
RESUMEN
BACKGROUND: In a recent paper, we described a new sponge species named Hemimycale mediterranea Uriz, Garate & Agell, 2017. However, we failed to designate a holotype and a type locality, as required by the International Commission on Zoological Nomenclature (ICZN). Although the validity of the previous conclusions remains unchanged, the species name cannot be considered available according to ICZN regulations until a holotype is designated. RESULTS: The present work fulfills the requirements of the ICZN by designating a holotype, three paratypes and the type locality for the new species Hemimycale mediterranea and has been registered in ZooBank.