Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol Lett ; 394: 114-127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437907

RESUMEN

Parkin regulates protein degradation and mitophagy in dopaminergic neurons. Deficiencies in Parkin expression or function lead to cellular stress, cell degeneration, and the death of dopaminergic neurons, which promotes Parkinson's disease. In contrast, Parkin overexpression promotes neuronal survival. Therefore, the mechanisms of Parkin upregulation are crucial to understand. We describe here the molecular mechanism of AHR-mediated Parkin regulation in human SH-SY5Y neuroblastoma cells. Specifically, we report that the human Parkin gene (PRKN) is transcriptionally upregulated by the aryl hydrocarbon receptor (AHR) through two different selective ligand-dependent pathways. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a stress-inducing AHR ligand, indirectly promotes PRKN transcription by inducing ATF4 expression via TCDD-mediated endoplasmic reticulum (ER) stress. In contrast, kynurenine, a nontoxic AHR agonist, induces PRKN transcription by promoting AHR binding to the PRKN promoter without activating ER stress. Our results demonstrate that AHR activation may be a potential pharmacological pathway to induce human Parkin, but such a strategy must carefully consider the choice of AHR ligand to avoid neurotoxic side effects.


Asunto(s)
Neuroblastoma , Dibenzodioxinas Policloradas , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Quinurenina , Ligandos , Ubiquitina-Proteína Ligasas/genética
2.
Neurotoxicology ; 99: 282-291, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979659

RESUMEN

Rotenone is a pesticide commonly used in agriculture that is associated with the risk of developing Parkinson's disease (PD) by inducing mitochondrial damage. As a protective cell response to different challenges, they activate mitophagy, which involves parkin activity. Parkin is an E3 ubiquitin ligase necessary in the initial steps of mitophagy, and its overexpression protects against parkinsonian effects in different models. Recent studies have reported that the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, induces parkin expression. Kynurenine, an endogenous AHR ligand, promotes neuroprotection in chronic neurodegenerative disorders, such as PD, although its neuroprotective mechanism needs to be fully understood. Therefore, we evaluated whether the overexpression of parkin by AHR activation with kynurenine promotes autophagy and reduces the neurotoxicity induced by rotenone in SH-SY5Y cells differentiated to dopaminergic neurons. SH-SY5Y neurons were treated with rotenone or pretreated with kynurenine or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and parkin levels, apoptosis, mitochondrial potential membrane, and autophagy were determined. The results showed that kynurenine and TCDD treatments induced parkin expression in an AHR-dependent manner. Kynurenine pretreatment inhibited rotenone-induced neuronal apoptosis in 17%, and the loss of mitochondrial membrane potential in 30% when compare to rotenone alone, together with a decrease in autophagy. By contrast, although TCDD treatment increased parkin levels, non-neuroprotective effects were observed. The kynurenine protective activity was AHR independent, suggesting that parkin induction might not be related to this effect. On the other hand, kynurenine treatment inhibited alpha amine-3-hydroxy-5-methyl-4-isoxazol propionic acid and N-methyl-D-aspartate receptors, which are well-known excitotoxicity mediators activated by rotenone exposure.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Dibenzodioxinas Policloradas , Humanos , Rotenona , Quinurenina/farmacología , Receptores de Hidrocarburo de Aril , Ligandos , Muerte Celular , Apoptosis , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Fármacos Neuroprotectores/farmacología
3.
Biochem Pharmacol ; 190: 114650, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34111426

RESUMEN

Parkin is a cytosolic E3 ubiquitin ligase that plays an important role in neuroprotection by targeting several proteins to be degraded by the 26S proteasome. Its dysfunction has been associated not only with Parkinson's disease (PD) but also with other neurodegenerative pathologies, such as Alzheimer's disease and Huntington's disease. More recently, Parkin has been identified as a tumor suppressor gene implicated in cancer development. Due to the important roles that this E3 ubiquitin ligase plays in cellular homeostasis, its expression, activity, and turnover are tightly regulated. Several reviews have addressed Parkin regulation; however, genetic and epigenetic regulation have been excluded. In addition to posttranslational modifications (PTMs), this review examines the regulatory mechanisms that control Parkin function through gene expression, epigenetic regulation, and degradation. Furthermore, the consequences of disrupting these regulatory processes on human health are discussed.


Asunto(s)
Supervivencia Celular/fisiología , Regulación de la Expresión Génica/fisiología , Neoplasias/metabolismo , Neuronas/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Ubiquitina-Proteína Ligasas/genética
4.
Biochem Pharmacol ; 168: 429-437, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31404530

RESUMEN

Parkin (PRKN) is a ubiquitin E3 ligase that catalyzes the ubiquitination of several proteins. Mutations in the human Parkin gene, PRKN, leads to degeneration of dopaminergic (DA) neurons, resulting in autosomal recessive early-onset parkinsonism and the loss of PRKN function is linked to sporadic Parkinson's disease (PD). Additionally, several in vitro studies have shown that overexpression of exogenous PRKN protects against the neurotoxic effects induced by a wide range of cellular stressors, emphasizing the need to study the mechanism(s) governing PRKN expression and induction. Here, Prkn was identified as a novel target gene of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor and member of the bHLH/PAS (basic helix-loop-helix/Per-Arnt-Sim) superfamily. AhR binds and transactivates the Prkn gene promoter. We also demonstrated that AhR is expressed in DA neurons and that its activation upregulates Prkn mRNA and protein levels in the mouse ventral midbrain. Additionally, the AhR-dependent increase in PRKN levels is associated with a decrease in the protein levels of its target substrate, α-synuclein, in an AhR-dependent manner, because this effect is not observed in Ahr-null mice. These results suggest that treatments designed to induce PRKN expression through the use of nontoxic AhR agonist ligands may be novel strategies to prevent and delay PD.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo , Actinas/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Hígado/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Ubiquitina-Proteína Ligasas/genética , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...