Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros












Intervalo de año de publicación
1.
Adv Med Sci ; 69(2): 398-406, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233278

RESUMEN

PURPOSE: Patients bearing estrogen receptor (ER)α-negative breast cancer tumors confront poor prognosis and are typically unresponsive to hormone therapy. Previous studies have shown that calcitriol, the active vitamin D metabolite, can induce ERα expression in ERα-negative cells. EB1089, a calcitriol analog with reduced calcemic effects, exhibits greater potency than calcitriol in inhibiting cancer cell growth. However, the impact of EB1089 on ERα expression in triple-negative breast cancer (TNBC) cells remains unexplored. This study aims to investigate whether EB1089 could induce functional ERα expression in TNBC cell lines, potentially enabling the antiproliferative effects of antiestrogens. MATERIALS AND METHODS: TNBC cell lines HCC1806 and HCC1937 were treated with EB1089, and ERα expression was analyzed using real-time PCR and Western blots. The transcriptional activity of induced ERα was evaluated through a luciferase reporter assay. The antiproliferative effects of tamoxifen and fulvestrant antiestrogens were assessed using the sulforhodamine B assay in the EB1089-treated cells. RESULTS: Our findings indicated that EB1089 significantly induced ERα mRNA and protein expression in TNBC cells. Moreover, EB1089-induced ERα exhibited transcriptional activity and effectively restored the inhibitory effects of antiestrogens, thereby suppressing cell proliferation in TNBC cells. CONCLUSION: EB1089 induced the expression of functional ERα in TNBC cells, restoring the antiproliferative effects of antiestrogens. These results highlight the potential of using EB1089 as a promising strategy for re-establishment of the antiproliferative effect of antiestrogens as a possible management for TNBC. This research lays the foundation for potential advancements in TNBC treatment, offering new avenues for targeted and effective interventions.

2.
Chem Biol Drug Des ; 104(1): e14596, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054402

RESUMEN

We have conducted an experimental and computational evaluation of new doxorubicin (4a-c) and ß-lapachone (5a-c) analogs. These novel anticancer analogs were previously synthesized, but had not been tested or characterized until now. We have evaluated their antiproliferative and DNA cleavage inhibition properties using breast (MCF-7 and MDA-MB-231) and prostate (PC3) cancer cell lines. Additionally, cell cycle analysis was performed using flow cytometry. Computational studies, including molecular docking, pharmacokinetic properties, and an analysis of DFT and QTAIM chemical descriptors, were performed to gain insights into the electronic structure and elucidate the molecular binding of the new ß-lapachone and doxorubicin analogs with a DNA sequence and Topoisomerase II (Topo II)α. Our results show that 4a analog displays the highest antiproliferative activity in cancer cell lines by inducing cell death. We observed that stacking interactions and hydrogen bonding are essential to stabilize the molecule-DNA-Topo IIα complex. Moreover, 4a and 5a analogs inhibited Topo's DNA cleavage activity. Pharmacodynamic results indicated that studied molecules have favorable adsorption and permeability properties. The calculated chemical descriptors indicate that electron accumulation in quinone rings is relevant to the reactivity and biological activity. Based on our results, 4a is a strong candidate for becoming an anticancer drug.


Asunto(s)
Antineoplásicos , Proliferación Celular , ADN-Topoisomerasas de Tipo II , Doxorrubicina , Simulación del Acoplamiento Molecular , Naftoquinonas , Naftoquinonas/química , Naftoquinonas/farmacología , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , ADN-Topoisomerasas de Tipo II/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células MCF-7 , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/metabolismo , División del ADN/efectos de los fármacos
3.
Arch Med Res ; 55(8): 103026, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897915

RESUMEN

BACKGROUND: Ulipristal acetate (UPA) and levonorgestrel are used as emergency hormonal contraceptives. Although both are highly effective in preventing pregnancy, UPA shows efficacy even when taken up to 120 h after unprotected sexual intercourse. AIMS: To investigate whether the mechanism of UPA's contraceptive action involves post-fertilization effects. METHODS: In vitro and in vivo studies using cultured human endometrial cells and a pre-clinical rat model. RESULTS: Endometrial cells treated with UPA showed changes in the expression of receptivity gene markers and a significant decrease in trophoblast spheroids attached to the cultured cells. In addition, administration of UPA to female unmated rats decreased the expression of implantation-related genes in the endometrium and inhibited the number of implantation sites in the mated group compared to the non-treated group. CONCLUSIONS: These results support that UPA as an emergency contraceptive might have post-fertilization effects that may affect embryo implantation.

4.
Horm Behav ; 164: 105593, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909429

RESUMEN

Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.


Asunto(s)
Modelos Animales de Enfermedad , Hipotálamo , Ratones Endogámicos C57BL , Animales , Femenino , Ratones , Hipotálamo/metabolismo , Ciclo Estral/fisiología , Salud Reproductiva , Trastorno Autístico/metabolismo , Trastorno Autístico/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Reproducción/fisiología , Reproducción/genética , Progesterona/sangre , Progesterona/metabolismo , Estradiol/sangre , Estradiol/metabolismo , Masculino , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/sangre
5.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542136

RESUMEN

HER2-positive breast cancer is associated with aggressive behavior and reduced survival rates. Calcitriol restores the antiproliferative activity of antiestrogens in estrogen receptor (ER)-negative breast cancer cells by re-expressing ERα. Furthermore, calcitriol and its analog, EB1089, enhance responses to standard anti-cancer drugs. Therefore, we aimed to investigate EB1089 effects when added to the combined treatment of lapatinib and antiestrogens on the proliferation of HER2-positive breast cancer cells. BT-474 (ER-positive/HER2-positive) and SK-BR-3 (ER-negative/HER2-positive) cells were pre-treated with EB1089 to modulate ER expression. Then, cells were treated with EB1089 in the presence of lapatinib with or without the antiestrogens, and proliferation, phosphorylation array assays, and Western blot analysis were performed. The results showed that EB1089 restored the antiproliferative response to antiestrogens in SK-BR-3 cells and improved the inhibitory effects of the combination of lapatinib with antiestrogens in the two cell lines. Moreover, EB1089, alone or combined, modulated ERα protein expression and reduced Akt phosphorylation in HER2-positive cells. EB1089 significantly enhanced the cell growth inhibitory effect of lapatinib combined with antiestrogens in HER2-positive breast cancer cells by modulating ERα expression and Akt phosphorylation suppression. These results highlight the potential of this therapeutic approach as a promising strategy for managing HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama , Calcitriol/análogos & derivados , Humanos , Femenino , Lapatinib/farmacología , Lapatinib/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Calcitriol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Moduladores de los Receptores de Estrógeno/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Antagonistas de Estrógenos/uso terapéutico , Línea Celular Tumoral
6.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004441

RESUMEN

Breast cancer is the most prevalent neoplasia among women worldwide. For the estrogen receptor-positive (ER+) phenotype, tamoxifen is the standard hormonal therapy; however, it carries the risk of promoting endometrial carcinoma. Hence, we aimed to evaluate the antiproliferative effect of the phytochemical α-mangostin (AM) as a co-adjuvant alongside tamoxifen on breast cancer cells to improve its efficacy while reducing its adverse effects on endometrium. For this, ER+ breast cancer cells (MCF-7 and T-47D) and endometrial cells (N30) were treated with AM, 4-hydroxytamoxifen (4-OH-TMX), and their combination. Cell proliferation was evaluated using sulforhodamine B assay, and the pharmacological interaction was determined through the combination index and the dose reduction index calculation. The genes KCNH1, CCDN1, MKI67, and BIRC5 were amplified by real-time PCR as indicators of oncogenesis, cell cycle progression, cell proliferation, and apoptosis, respectively. Additionally, genes involved in ER signaling were analyzed. In breast cancer cells, the combination of AM with 4-OH-TMX showed a synergistic antiproliferative effect and favorable dose reduction. AM and 4-OH-TMX decreased KCNH1, CCND1, and BIRC5 gene expression. In endometrial cells, AM decreased MKI-67 gene expression, while it reverted the 4-OH-TMX-dependent CCND1 upregulation. This study establishes the benefits of incorporating AM as a co-adjuvant for first-line ER+ breast cancer therapy.

7.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762073

RESUMEN

Vasculogenic mimicry (VM), a process in which aggressive cancer cells form tube-like structures, plays a crucial role in providing nutrients and escape routes. Highly plastic tumor cells, such as those with the triple-negative breast cancer (TNBC) phenotype, can develop VM. However, little is known about the interplay between the cellular components of the tumor microenvironment and TNBC cells' VM capacity. In this study, we analyzed the ability of endothelial and stromal cells to induce VM when interacting with TNBC cells and analyzed the involvement of the FGFR/PI3K/Akt pathway in this process. VM was corroborated using fluorescently labeled TNBC cells. Only endothelial cells triggered VM formation, suggesting a predominant role of paracrine/juxtacrine factors from an endothelial origin in VM development. Via immunocytochemistry, qPCR, and secretome analyses, we determined an increased expression of proangiogenic factors as well as stemness markers in VM-forming cancer cells. Similarly, endothelial cells primed by TNBC cells showed an upregulation of proangiogenic molecules, including FGF, VEGFA, and several inflammatory cytokines. Endothelium-dependent TNBC-VM formation was prevented by AZD4547 or LY294002, strongly suggesting the involvement of the FGFR/PI3K/Akt axis in this process. Given that VM is associated with poor clinical prognosis, targeting FGFR/PI3K/Akt pharmacologically may hold promise for treating and preventing VM in TNBC tumors.

8.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240017

RESUMEN

Vitamin D along with its active metabolite calcitriol and its metabolic and signaling system, known as the vitamin D endocrine system, have been widely recognized as a pivotal regulator of calcium homeostasis in addition to non-calcemic antitumoral effects in a variety of human cancers, including cervical cancer. Several studies have found an inverse relationship between the incidence of cervical neoplasia and vitamin D levels. This narrative review updates the current evidence supporting the notion that the vitamin D endocrine system has a preventive role on cervical cancer, mainly in the early phases of the disease, acting at the level of suppressing cell proliferation, promoting apoptosis, modulating inflammatory responses, and probably favoring the clearance of human papillomavirus-dependent cervical lesions. Although an optimal vitamin D status helps in the prevention and regression of low-grade squamous intraepithelial lesions of the cervix, it appears that vitamin D alone or combined with chemotherapeutic agents has little effectivity once advanced cervical cancer is established. These observations suggest that an optimal vitamin D status might exert beneficial actions in the early phases of cervical cancer by preventing its onset and progression.


Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/prevención & control , Neoplasias del Cuello Uterino/epidemiología , Vitamina D/uso terapéutico , Displasia del Cuello del Útero/patología , Infecciones por Papillomavirus/patología , Cuello del Útero/patología , Vitaminas , Papillomaviridae
9.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769377

RESUMEN

Cervical cancer is the fourth most common cancer among women worldwide. The main factor associated with the onset and progression of this neoplasia is the human papillomavirus (HPV) infection. The HPV-oncogenes E6 and E7 are critical drivers of cellular transformation, promoting the expression of oncogenes such as KCNH1. The phytochemical α-mangostin (AM) is a potent antineoplastic and antiviral compound. However, its effects on HPV oncogenes and KCNH1 gene expression remain unknown. This study evaluated the effects of AM on cell proliferation, cell cycle distribution and gene expression, including its effects on tumor growth in xenografted mice. AM inhibited cell proliferation in a concentration-dependent manner, being the most sensitive cell lines those with the highest number of HPV16 copies. In addition, AM promoted G1-cell cycle arrest in CaSki cells, while led to cell death in SiHa and HeLa cells. Of interest was the finding of an AM-dependent decreased gene expression of E6, E7 and KCNH1 both in vitro and in vivo, as well as the modulation of cytokine expression, Ki-67, and tumor growth inhibition. On these bases, we suggest that AM represents a good option as an adjuvant for the treatment and prevention of cervical cancer.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Animales , Ratones , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Células HeLa , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Represoras/genética , Oncogenes , Proliferación Celular , Expresión Génica , Canales de Potasio Éter-A-Go-Go/genética
10.
Cells ; 11(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36010605

RESUMEN

Chronic infection by high-risk human papillomaviruses (HPV) and chronic inflammation are factors associated with the onset and progression of several neoplasias, including cervical cancer. Oncogenic proteins E5, E6, and E7 from HPV are the main drivers of cervical carcinogenesis. In the present article, we review the general mechanisms of HPV-driven cervical carcinogenesis, as well as the involvement of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and downstream effectors in this pathology. We also review the evidence on the crosstalk between chronic HPV infection and PGE2 signaling, leading to immune response weakening and cervical cancer development. Finally, the last section updates the current therapeutic and preventive options targeting PGE2-derived inflammation and HPV infection in cervical cancer. These treatments include nonsteroidal anti-inflammatory drugs, prophylactic and therapeutical vaccines, immunomodulators, antivirals, and nanotechnology. Inflammatory signaling pathways are closely related to the carcinogenic nature of the virus, highlighting inflammation as a co-factor for HPV-dependent carcinogenesis. Therefore, blocking inflammatory signaling pathways, modulating immune response against HPV, and targeting the virus represent excellent options for anti-tumoral therapies in cervical cancer.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Carcinogénesis , Femenino , Humanos , Inflamación/complicaciones , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Prostaglandinas , Prostaglandinas E , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología
11.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35887002

RESUMEN

In highly aggressive tumors, cancer cells may form channel-like structures through a process known as vasculogenic mimicry (VM). VM is generally associated with metastasis, mesenchymal phenotype, and treatment resistance. VM can be driven by antiangiogenic treatments and/or tumor microenvironment-derived factors, including those from the endothelium. Curcumin, a turmeric product, inhibits VM in some tumors, while calcitriol, the most active vitamin D metabolite, exerts potent antineoplastic effects. However, the effect of these natural products on VM in breast cancer remains unknown. Herein, we studied the effect of both compounds on triple-negative breast cancer (TNBC) VM-capacity in a co-culture model. The process of endothelial cell-induced VM in two human TNBC cell lines was robustly inhibited by calcitriol and partially by curcumin. Calcitriol promoted TNBC cells' morphological change from spindle-like to cobblestone-shape, while curcumin diminished VM 3D-structure. Notably, the treatments dephosphorylated several active kinases, especially those involved in the PI3K/Akt pathway. In summary, calcitriol and curcumin disrupted endothelium-induced VM in TNBC cells partially by PI3K/Akt inactivation and mesenchymal phenotype inhibition. Our results support the possible use of these natural compounds as adjuvants for VM inactivation in patients with malignant tumors inherently capable of forming VM, or those with antiangiogenic therapy, warranting further in vivo studies.


Asunto(s)
Calcitriol , Curcumina , Endotelio Vascular , Neoplasias de la Mama Triple Negativas , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Calcitriol/farmacología , Calcitriol/uso terapéutico , Línea Celular Tumoral , Curcumina/farmacología , Curcumina/uso terapéutico , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
12.
Cell Signal ; 92: 110246, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35033667

RESUMEN

Medulloblastoma (MB) is the most common and aggressive pediatric intracranial tumor. Estrogen receptor ß (ERß) expression correlates with MB development and its phosphorylation modifies its transcriptional activity in a ligand-dependent or independent manner. Using in silico tools, we have identified several residues in ERß protein as potential targets of protein kinases C (PKCs) α and δ. Using Daoy cells, we observed that PKCα and PKCδ associate with ERß and induce its phosphorylation. The activation of ERß promotes MB cells proliferation and invasion, and PKCs downregulation dysregulates these steroid receptor mediated processes. Our data suggest that these kinases may play a crucial role in the regulation of the ERß transcriptional activity. Overexpression of both PKCα and PKCδ in MB biopsies samples supports their relevance in MB progression.


Asunto(s)
Neoplasias Cerebelosas , Receptor beta de Estrógeno , Meduloblastoma , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C , Línea Celular Tumoral , Proliferación Celular , Niño , Receptor alfa de Estrógeno , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo
13.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884550

RESUMEN

Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling pathways involved in the control of cell proliferation. In addition, calcitriol combined with different kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating patients with breast cancer has not yet been fully established. Accordingly, in the present work, we review and discuss the preclinical and clinical studies about the combination of calcitriol with different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for the treatment of this pathology.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Calcitriol/uso terapéutico , Sinergismo Farmacológico , Apoptosis , Conservadores de la Densidad Ósea/uso terapéutico , Neoplasias de la Mama/patología , Quimioterapia Combinada , Femenino , Humanos
14.
J Steroid Biochem Mol Biol ; 214: 105979, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34438041

RESUMEN

Chemotherapy is a standard therapeutic option for triple-negative breast cancer (TNBC); however, its effectiveness is often compromised by drug-related toxicity and resistance development. Herein, we aimed to evaluate whether an improved antineoplastic effect could be achieved in vitro and in vivo in TNBC by combining dovitinib, a multi-kinase inhibitor, with calcitriol, a natural anticancer hormone. In vitro, cell proliferation and cell-cycle distribution were studied by sulforhodamine B-assays and flow cytometry. In vivo, dovitinib/calcitriol effects on tumor growth, angiogenesis, and endothelium activation were evaluated in xenografted mice by caliper measures, Itgb3/VEGFR2-immunohistochemistry and 99mTc-Ethylenediamine-N,N-diacetic acid/hydrazinonicotinamyl-Glu[cyclo(Arg-Gly-Asp-D-Phe-Lys)]2 (99mTc-RGD2)-tumor uptake. The drug combination elicited a synergistically improved antiproliferative effect in TNBC-derived cells, which allowed a 7-fold and a 3.3-fold dovitinib dose-reduction in MBCDF-Tum and HCC-1806 cells, respectively. Mechanistically, the co-treatment induced a cell cycle profile suggestive of cell death and DNA damage (accumulation of cells in SubG1, S, and G2/M phases), increased the number of multinucleated cells and inhibited tumor growth to a greater extent than each compound alone. Tumor uptake of 99mTc-RGD2 was reduced by dovitinib, suggesting angiogenesis inhibition, which was corroborated by decreased endothelial cell growth, tumor-vessel density and VEGFR2 expression. In summary, calcitriol synergized dovitinib anticancer effects in vitro and in vivo, allowing for a significant dose-reduction of dovitinib while maintaining its antiproliferative potency. Our results suggest the beneficial convergence of independent antitumor mechanisms of dovitinib and calcitriol to inhibit TNBC-tumor growth.


Asunto(s)
Antineoplásicos/farmacología , Bencimidazoles/farmacología , Calcitriol/farmacología , Oligopéptidos/química , Quinolonas/farmacología , Tecnecio/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Bencimidazoles/administración & dosificación , Calcitriol/administración & dosificación , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Concentración 50 Inhibidora , Integrina beta3/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neovascularización Patológica , Quinolonas/administración & dosificación , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Cells ; 10(7)2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34359928

RESUMEN

In solid tumors, vasculogenic mimicry (VM) is the formation of vascular structures by cancer cells, allowing to generate a channel-network able to transport blood and tumor cells. While angiogenesis is undertaken by endothelial cells, VM is assumed by cancer cells. Besides the participation of VM in tumor neovascularization, the clinical relevance of this process resides in its ability to favor metastasis and to drive resistance to antiangiogenic therapy. VM occurs in many tumor types, including breast cancer, where it has been associated with a more malignant phenotype, such as triple-negative and HER2-positive tumors. The latter may be explained by known drivers of VM, like hypoxia, TGFB, TWIST1, EPHA2, VEGF, matrix metalloproteinases, and other tumor microenvironment-derived factors, which altogether induce the transformation of tumor cells to a mesenchymal phenotype with a high expression rate of stemness markers. This review analyzes the current literature in the field, including the participation of some microRNAs and long noncoding RNAs in VM-regulation and tumorigenesis of breast cancer. Considering the clinical relevance of VM and its association with the tumor phenotype and clinicopathological parameters, further studies are granted to target VM in the clinic.


Asunto(s)
Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/patología , Imitación Molecular , Neovascularización Patológica/patología , Animales , Neoplasias de la Mama/genética , Femenino , Humanos , Imitación Molecular/genética , Fenotipo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Microambiente Tumoral/genética
16.
Daru ; 29(2): 291-310, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34297326

RESUMEN

PURPOSE: Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of gene expression due to their overexpression in several cancer forms. Therefore, these enzymes are considered as a potential anticancer drug target. Different synthetic and natural structures have been studied as HDACs inhibitors; based on available structural design information, the capping group is important for the biological activity due to the different interactions in the active site entrance. The present study aimed to analyze high substituted pyridine as a capping group, which included carrying out the synthesis, antiproliferative activity analysis, and docking studies of these novel compounds. METHODS: To achieve the synthesis of these derivatives, four reaction steps were performed, generating desired products 15a-k. Their effects on cell proliferation and gene expression of p21, cyclin D1, and p53 were determined using the sulphorhodamine B (SRB) method and quantitative real-time polymerase chain reaction. The HDAC1, HDAC6, and HDAC8 isoforms were used for performing docking experiments with our 15a-k products. RESULT: The products 15a-k were obtained in overall yields of 40-71%. Compounds 15j and 15k showed the highest antiproliferative activity in the breast (BT-474 and MDA-MB-231) and prostate (PC3) cancer cell lines at a concentration of 10 µM. These compounds increased p21 mRNA levels and decreased cyclin D1 and p53 gene expression. The docking study showed an increment in the strength, and in the number of interactions performed by the capping moiety of the tested molecules compared with SAHA; interactions displayed are mainly van der Waals, π-stacking, and hydrogen bond. CONCLUSION: The synthesized compounds 2-thiophene (15j) and 2-furan (15k) pyridine displayed cell growth inhibition, regulation of genes related to cell cycle progression in highly metastatic cancer cell lines. The molecular coupling analysis performed with HDAC1, HDAC6 and HDAC8 showed an increment in the number of interactions performed by the capping moiety and consequently in the strength of the capping group interaction.


Asunto(s)
Neoplasias de la Mama/genética , Ciclina D1/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Furanos/síntesis química , Inhibidores de Histona Desacetilasas/síntesis química , Neoplasias de la Próstata/genética , Piridinas/química , Tiofenos/síntesis química , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética/efectos de los fármacos , Femenino , Furanos/química , Furanos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Simulación del Acoplamiento Molecular , Células PC-3 , Embarazo , Neoplasias de la Próstata/tratamiento farmacológico , Tiofenos/química , Tiofenos/farmacología
17.
J Steroid Biochem Mol Biol ; 209: 105831, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582304

RESUMEN

Calcitriol and transforming growth factors beta (TGF-ß) are involved in several biological pathways such as cell proliferation, differentiation, migration and invasion. Their cellular effects could be similar or opposite depending on the genetic target, cell type and context. Despite the reported association of calcitriol deficiency and disruption of the TGF-ß pathway in prostate cancer and the well-known independent effects of calcitriol and TGF-ßs on cancer cells, there is limited information regarding the cellular effects of calcitriol and TGF-ß in combination. In this study, we in vitro analyze the combinatory effects of calcitriol and TGF-ß on cell growth and apoptosis using PC-3 and DU145 human prostate cancer cell lines. Using high-throughput microarray profiling of PC-3 cells upon independent and combinatory treatments, we identified distinct transcriptional landscapes of each intervention, with a higher effect established by the combinatorial treatment, following by TGF-ß1 and later by calcitriol. A set of genes and enriched pathways converge among the treatments, mainly between the combinatory scheme and TGF-ß1, but the majority were treatment-specific. Of note, CYP24A1, IGFBP3, CDKN1A, NOX4 and UBE2D3 were significantly up-regulated upon the combinatorial treatment whereas CCNA1, members of the CT45A and APOBEC3 family were down-regulated. By public RNA signatures, we were able to confirm the regulation by the co-treatment over cell proliferation and cell cycle. We finally investigated the possible clinical impact of genes modulated by the combinatorial treatment using benchmark prostate cancer data. This comprehensive analysis reveals that the combinatory treatment impairs cell growth without affecting apoptosis and their combinatory actions might synergize and improved their individual effects to reprogram prostate cancer signaling.


Asunto(s)
Antineoplásicos/farmacología , Calcitriol/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta2/farmacología , Vitaminas/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Calcitriol/análogos & derivados , Movimiento Celular , Proliferación Celular , Quimioterapia Combinada , Perfilación de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
18.
Am J Cancer Res ; 11(12): 5951-5964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35018235

RESUMEN

Patients with estrogen receptor (ER) α-negative breast tumors have a poor prognosis and are not suitable for hormone therapy. Previously, we demonstrated that calcitriol, the active metabolite of vitamin D, induces ERα expression and re-establishes the response to antiestrogens in ER-negative breast cancer cells. However, the mechanisms involved in this process have not been elucidated. Therefore, the present study was undertaken to investigate the mechanisms implicated in the calcitriol-induced ERα expression in ER-negative breast cancer cells. Using EMSA and ChIP assays, we found that the calcitriol/vitamin D receptor (VDR)/retinoic X receptor (RXR) complex binds to putative vitamin D response elements (VDREs) in the ERα gene promoter region. In addition, we established by a fluorometric assay that calcitriol decreased DNA-methyltransferase and histone deacetylase activities. Flow cytometry and qPCR analyses showed that co-treatment of calcitriol with inhibitors of the histone deacetylase and DNA methyltransferase, and genistein significantly increased ERα expression, compared to that observed with the compounds alone. In conclusion, the calcitriol-dependent ERα induction in ER-negative breast cancer cells results from binding of the VDR-RXR complex to VDREs in the ERα gene promoter region, including the downregulation of enzymes with chromatin-remodeling activities. These results may bring forth novel mechanistic knowledge into the actions of calcitriol in ERα-negative breast cancer.

19.
Molecules ; 25(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158250

RESUMEN

Coumarin-hydroxamic acid derivatives 7a-k were herein designed with a dual purpose: as antiproliferative agents and fluorescent probes. The compounds were synthesized in moderate yields (30-87%) through a simple methodology, biological evaluation was carried out on prostate (PC3) and breast cancer (BT-474 and MDA-MB-231) cell lines to determine the effects on cell proliferation and gene expression. For compounds 7c, 7e, 7f, 7i and 7j the inhibition of cancer cell proliferation was similar to that found with the reference compound at a comparable concentration (10 µM), in addition, their molecular docking studies performed on histone deacetylases 1, 6 and 8 showed strong binding to the respective active sites. In most cases, antiproliferative activity was accompanied by greater levels of cyclin-dependent kinase inhibitor p21, downregulation of the p53 tumor suppressor gene, and regulation of cyclin D1 gene expression. We conclude that compounds 7c, 7e, 7f, 7i and 7j may be considered as potential anticancer agents, considering their antiproliferative properties, their effect on the regulation of the genes, as well as their capacity to dock to the active sites. The fluorescent properties of compound 7j and 7k suggest that they can provide further insight into the mechanism of action.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular/efectos de los fármacos , Cumarinas , Colorantes Fluorescentes , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cumarinas/síntesis química , Cumarinas/química , Cumarinas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Masculino , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Relación Estructura-Actividad
20.
Environ Res ; 191: 109960, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33181973

RESUMEN

Breast cancer is one of the most common malignancies and the second leading cause of death in women. Despite efforts for its early detection, its worldwide incidence continues to increase. Thus, identification of risk factors for its development and new targets for its therapy are of vital importance. Environmental pollutants derived from human activity have been associated with predisposition to the development of cancer. Bisphenol A (BPA) is an endocrine disruptor compound (EDC) widely used in the manufacture of polycarbonates, and it has affinity for the estrogen receptor (ER). Scientific evidence has proposed an association between increased incidence of breast cancer and BPA exposure at lower doses. Among worldwide concerns with BPA exposure, different industries proceeded to replace BPA with analogs such as bisphenol S (BPS), which is now employed in products labelled as BPA-free. Nevertheless, recent studies exhibit that its exposure results in altered mammary gland development and morphogenesis; and promotes breast cancer cell proliferation. Of note, most of the effects of both BPA and BPS have been performed in estrogen-dependent breast cancer models. However, gaps in knowledge still exist on the roles and mechanisms that both compounds, specifically BPS, may play in cancer initiation and development in hormone-dependent and other types of breast cancer. Thus, the aim of the present study was to deepen the understanding of biological targets modulated by these ubiquitous pollutants in different breast cancer cell lines, representing two scenarios of this pathology: hormone-dependent and hormone-independent breast cancer. Results point out that both compounds induced proliferation in ER positive cells, not showing this effect in the ER-negative breast cancer cells. Different targets modified at the proteomic level in both breast cancer scenarios were also identified. Stem cell markers (eg. CD44) and invasion proteins (eg. MMP-14) were importantly increased by BPA and BPS in ER-positive breast cancer cells. In contrast, growth factors and associated receptors such as EGFR and TGF-ß were induced by BPS in the ER-negative breast cancer cells; both pollutants induced an increase of vascular endothelial growth factor (VEGF) protein secretion. This finding suggests that the use of BPS must be considered with more caution than BPA, since it can act independently of the presence of the hormonal receptor. These findings show new evidence that BPA and BPS exposure can contribute to breast cancer development and progression. Our results suggest that both BPA and BPS must be considered equally as outstanding risk factors for this pathology.


Asunto(s)
Neoplasias de la Mama , Contaminantes Ambientales , Compuestos de Bencidrilo/toxicidad , Neoplasias de la Mama/inducido químicamente , Contaminantes Ambientales/toxicidad , Femenino , Humanos , Fenoles , Fenotipo , Proteómica , Sulfonas , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...