Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 629, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243817

RESUMEN

The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) has adopted the FAIR Guiding Principles. We present the Atlas chapter of Working Group I (WGI) as a test case. We describe the application of the FAIR principles in the Atlas, the challenges faced during its implementation, and those that remain for the future. We introduce the open source repository resulting from this process, including coding (e.g., annotated Jupyter notebooks), data provenance, and some aggregated datasets used in some figures in the Atlas chapter and its interactive companion (the Interactive Atlas), open to scrutiny by the scientific community and the general public. We describe the informal pilot review conducted on this repository to gather recommendations that led to significant improvements. Finally, a working example illustrates the re-use of the repository resources to produce customized regional information, extending the Interactive Atlas products and running the code interactively in a web browser using Jupyter notebooks.

2.
Med ; 2(4): 355-361, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35590157

RESUMEN

Despite the wealth of available climate data available, there is no consensus on the most appropriate product choice for health impact modelling and how this influences downstream climate-health decisions. We discuss challenges related to product choice, highlighting the importance of considering data biases and co-development of climate services between different sectors.


Asunto(s)
Cambio Climático , Clima
3.
Proc Natl Acad Sci U S A ; 116(48): 24268-24274, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712420

RESUMEN

A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue.


Asunto(s)
Dengue/epidemiología , Métodos Epidemiológicos , Brotes de Enfermedades , Epidemias/prevención & control , Humanos , Incidencia , Modelos Estadísticos , Perú/epidemiología , Puerto Rico/epidemiología
4.
Lancet Planet Health ; 1(4): e142-e151, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-29851600

RESUMEN

BACKGROUND: El Niño and its effect on local meteorological conditions potentially influences interannual variability in dengue transmission in southern coastal Ecuador. El Oro province is a key dengue surveillance site, due to the high burden of dengue, seasonal transmission, co-circulation of all four dengue serotypes, and the recent introduction of chikungunya and Zika. In this study, we used climate forecasts to predict the evolution of the 2016 dengue season in the city of Machala, following one of the strongest El Niño events on record. METHODS: We incorporated precipitation, minimum temperature, and Niño3·4 index forecasts in a Bayesian hierarchical mixed model to predict dengue incidence. The model was initiated on Jan 1, 2016, producing monthly dengue forecasts until November, 2016. We accounted for misreporting of dengue due to the introduction of chikungunya in 2015, by using active surveillance data to correct reported dengue case data from passive surveillance records. We then evaluated the forecast retrospectively with available epidemiological information. FINDINGS: The predictions correctly forecast an early peak in dengue incidence in March, 2016, with a 90% chance of exceeding the mean dengue incidence for the previous 5 years. Accounting for the proportion of chikungunya cases that had been incorrectly recorded as dengue in 2015 improved the prediction of the magnitude of dengue incidence in 2016. INTERPRETATION: This dengue prediction framework, which uses seasonal climate and El Niño forecasts, allows a prediction to be made at the start of the year for the entire dengue season. Combining active surveillance data with routine dengue reports improved not only model fit and performance, but also the accuracy of benchmark estimates based on historical seasonal averages. This study advances the state-of-the-art of climate services for the health sector, by showing the potential value of incorporating climate information in the public health decision-making process in Ecuador. FUNDING: European Union FP7, Royal Society, and National Science Foundation.


Asunto(s)
Dengue/epidemiología , El Niño Oscilación del Sur , Tiempo (Meteorología) , Ciudades/epidemiología , Clima , Dengue/virología , Ecuador/epidemiología , Predicción , Incidencia , Modelos Teóricos , Estudios Retrospectivos
5.
Sci Rep ; 6: 36344, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808279

RESUMEN

Despite extensive ongoing efforts on improving the long-term prediction of El Niño-Southern Oscillation, the predictability in state-of-the-art operational schemes remains limited by factors such as the spring barrier and the influence of atmospheric winds. Recent research suggests that the 2014/15 El Niño (EN) event was stalled as a result of an unusually strong basin-wide easterly wind burst in June, which led to the discharge of a large fraction of the subsurface ocean heat. Here we use observational records and numerical experiments to explore the sensitivity of EN to the magnitude of the heat buildup occurring in the ocean subsurface 21 months in advance. Our simulations suggest that a large increase in heat content during this phase can lead to basin-wide uniform warm conditions in the equatorial Pacific the winter before the occurrence of a very strong EN event. In our model configuration, the system compensates any initial decrease in heat content and naturally evolves towards a new recharge, resulting in a delay of up to one year in the occurrence of an EN event. Both scenarios substantiate the non-linear dependency between the intensity of the subsurface heat buildup and the magnitude and timing of subsequent EN episodes.

6.
Int J Environ Res Public Health ; 13(2): 206, 2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26861369

RESUMEN

Heat waves have been responsible for more fatalities in Europe over the past decades than any other extreme weather event. However, temperature-related illnesses and deaths are largely preventable. Reliable sub-seasonal-to-seasonal (S2S) climate forecasts of extreme temperatures could allow for better short-to-medium-term resource management within heat-health action plans, to protect vulnerable populations and ensure access to preventive measures well in advance. The objective of this study is to assess the extent to which S2S climate forecasts could be incorporated into heat-health action plans, to support timely public health decision-making ahead of imminent heat wave events in Europe. Forecasts of apparent temperature at different lead times (e.g., 1 day, 4 days, 8 days, up to 3 months) were used in a mortality model to produce probabilistic mortality forecasts up to several months ahead of the 2003 heat wave event in Europe. Results were compared to mortality predictions, inferred using observed apparent temperature data in the mortality model. In general, we found a decreasing transition in skill between excellent predictions when using observed temperature, to predictions with no skill when using forecast temperature with lead times greater than one week. However, even at lead-times up to three months, there were some regions in Spain and the United Kingdom where excess mortality was detected with some certainty. This suggests that in some areas of Europe, there is potential for S2S climate forecasts to be incorporated in localised heat-health action plans. In general, these results show that the performance of this climate service framework is not limited by the mortality model itself, but rather by the predictability of the climate variables, at S2S time scales, over Europe.


Asunto(s)
Planificación en Salud/métodos , Trastornos de Estrés por Calor/mortalidad , Trastornos de Estrés por Calor/prevención & control , Calor/efectos adversos , Salud Pública/métodos , Tiempo (Meteorología) , Clima , Europa (Continente)/epidemiología , Predicción , Trastornos de Estrés por Calor/epidemiología , Humanos , Modelos Estadísticos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...